Calculus 141, section 9.6 Ratio Test and Root Tests
notes by Tim Pilachowski

- The geometric series \(\sum_{n=m}^{\infty} cr^n = \frac{cr^m}{1-r} \) if and only if \(|r| < 1 \).

- The \(p \)-series \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) converges whenever \(p > 1 \) and diverges whenever \(0 < p \leq 1 \).

- The Integral Test states a series \(\sum_{n=1}^{\infty} a_n \) converges if and only if \(\int_1^{\infty} f(x) \, dx \) converges.

- In the Direct Comparison Test, \(\sum_{n=1}^{\infty} a_n \) converges if its terms are less than those of a known convergent series, and diverges if its terms are greater than those of a known convergent series.

- The Limit Comparison Test states: If \(\lim_{n \to \infty} \frac{a_n}{b_n} \) exists and is a positive number, then positive series \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) either both converge or both diverge.

A downside to the Comparison Tests is that they require a suitable series to use for the comparison. In contrast, the Ratio Test and the Root Test require only the series itself.

Ratio Test (Theorem 9.15) Given a positive series \(\sum_{n=1}^{\infty} a_n \) for which \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = r \): a. If \(0 \leq r < 1 \), then \(\sum_{n=1}^{\infty} a_n \) converges. b. If \(r > 1 \), then \(\sum_{n=1}^{\infty} a_n \) diverges. c. If \(r = 1 \) or \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \) does not exist, no conclusion.

The proof of part a. relies upon the definition of limits and the "creation" of a geometric series which converges to which we compare our original series. Briefly, by the nature of inequalities there exists a value \(s \) for which \(0 \leq r \leq s < 1 \). From the definition of limits, there exists a value \(N \) such that for \(n \geq N \), \(\frac{a_{n+1}}{a_n} \leq s \Rightarrow a_{n+1} \leq a_n s \).

Then \(0 < a_{N+2} \leq a_{N+1} s \leq (a_N s)^2 \Rightarrow 0 < a_{N+n} \leq a_N s^n \). The latter value is the basis for a geometric series which converges. The application of the Comparison Test finishes the proof of part a. The proof of part b. is analogous, with \(r > s > 1 \).

Hint: The Ratio Test works best for series such as \(\sum \frac{1}{n!} \), \(\sum r^n \), and \(\sum \frac{1}{2^n + c} \) for which \(n \) is a factorial or an exponent.

Example A: Does \(\sum_{n=0}^{\infty} \frac{100^n}{n!} \) converge? **Answer:** yes
Example B: Does \(\sum_{n=1}^{\infty} \frac{n^n}{n!} \) converge? \textit{Answer: no}

Example B upside down: Does the "reciprocal" series \(\sum_{n=1}^{\infty} \frac{n!}{n^n} \) converge? \textit{Answer: yes}

In Lecture 9.4 it was noted that since \(\left\{ \frac{n!}{n^n} \right\} \) converges to 0, although we could say that \(\sum_{n=1}^{\infty} \frac{n!}{n^n} \) might converge, we could not be certain that it \textit{does} converge.

The nature of the Ratio Test is such that if it shows a series converges, then the series involving the reciprocals of the terms must diverge, and vice-versa.

Example C: Use the Ratio Test to test convergence of \(\sum_{n=1}^{\infty} \frac{1}{n} \) and \(\sum_{n=1}^{\infty} \frac{1}{n^2} \). \textit{Answer: inconclusive}
Root Test (Theorem 9.16) Given a positive series $\sum_{n=1}^{\infty} a_n$ for which $\lim_{n \to \infty} \sqrt[n]{a_n} = r$:

- a. If $0 \leq r < 1$, then $\sum_{n=1}^{\infty} a_n$ converges.
- b. If $r > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- c. If $r = 1$ or $\lim_{n \to \infty} \sqrt[n]{a_n} = r$ DNE, no conclusion.

The proof is a little simpler than that for the Ratio Test. For values s and N as described above,

$$\sqrt[n]{a_n} \leq s \Rightarrow a_n \leq s^n,$$

the basis for a geometric series which converges. The Comparison Test finishes the proof of part a. The proof of part b. is analogous, with $r > s > 1$. The Root Test is especially useful in series that involve a kth power and which have no complications such as factorials.

Example D: Does $\sum_{n=1}^{\infty} a_n$ converge?

Answer: yes

Example E: Does $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^n}$ converge?

Answer: no