1. Let k be an algebraic closure of \mathbb{F}_q. Let $G = \text{sl}_2(k)$ and \mathbb{B} be the subgroup of upper triangle matrices in $SL_2(k)$. Let $\epsilon : \mathbb{B} \to k^\times$ be the character defined by $\epsilon \left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array} \right) = a$. For $n \in \mathbb{N}$, set
\[\Delta'(n) = \{ f \in k[G]; f(gb) = \epsilon(b)^{-n} f(g) \text{ for all } g \in G, b \in \mathbb{B} \}. \]
Prove that $\Delta'(n) = \text{Sym}^n(V)$ as G-modules, where V is the tautological representation of G.

2. Let k be an algebraic closure of \mathbb{F}_q. Let $G = \text{sl}_3(k)$. Let $Fr : G \to G$ be the standard Frobenius morphism defined by $(a_{ij}) \mapsto (a_{ij}^q)$ and $Fr' : G \to G$ be the Frobenius morphism defined by $(a_{ij}) \mapsto t(a_{ij}^q)^{-1}$. Compute the order of the finite groups G^{Fr} and $G^{Fr'}$.

3. Again let k be an algebraic closure of \mathbb{F}_q. Let $G = \text{sl}_n(k)$ and let Fr, Fr' be two different Frobenius morphisms defined as in Problem 2.
 (1) Compute the number of G^{Fr}-conjugacy classes of rational maximal tori.
 (2) Compute the number of $G^{Fr'}$-conjugacy classes of rational maximal tori.

4. Let G be the group of type G_2 over k and $G^{Fr} = G_2(\mathbb{F}_q)$. The Weyl group of G_2 is generated by s_1 and s_2 with relations $s_1^2 = s_2^2 = (s_1 s_2)^6 = 1$ and the action on W induced by Frobenius is trivial. Compute the number of G^{Fr}-conjugacy classes of rational maximal tori.

5. Let (L, δ) and (M, η) be two cuspidal pairs. Prove that
\[< R^G_L \delta, R^G_M \eta > = |\{ x \in G^{Fr}; xLx^{-1} = M, \text{Ad}(x)\delta = \eta \}|/|L^{Fr}|. \]

6. Let k be an algebraically closed field and $G = SL_2(k)$. Let s be the nonidentity element in the Weyl group S_2. Consider the multiplication map $f : BsB \times_B BsB \to G$. Prove that there exists a decomposition $BsB \times_B BsB = X_1 \sqcup X_2$, where X_1 is closed and X_2 is open and $f |_{X_1} : X_1 \to B$ is a line bundle and $f |_{X_2} : X_2 \to BsB$ is a line bundle with zero section removed.

7. Compute the number of geometric conjugacy classes of (T, θ) for $SL_2(\mathbb{F}_q)$. What are the Lusztig’s series associated to each geometric conjugacy class?