DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM AUGUST 1992

ALGEBRA (Ph.D. Version)

Instructions to the student

- a. Answer all six questions; each will be assigned a grade from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (not your name) on the outside of the booklet.
 - c. Keep scratch work on separate pages in the same booklet.
 - 1. Let C be a single conjugacy class of elements in the symmetric group S_n .
 - (a) Prove that the set P of all products of (not necessarily distinct) elements of C is a subgroup of S_n .
 - (b) Show that P is either S_n , A_n , $\{e\}$, or when n=4, the Klein 4-group $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. You may use the fact that A_n is simple for $n \neq 4$, but you should justify any other assertions you use about subgroups of S_n .
 - 2. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that $T(v) \perp v$ for all $v \in \mathbb{R}^3$. Show that T is not invertible.
 - (b) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation such that $T(v) \perp v$ for all $v \in \mathbb{R}^n$. Show that T is skew-symmetric $(T^t = -T)$. (Hint: Work with $T(v_1 + v_2)$)
 - 3. Let G be the group of automorphisms of the group $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Find the structure of G (that is, identify it with a known group).
 - 4. (parts (a) and (b) are independent)
 - (a) Consider an exact sequence of abelian groups

$$0 \to \mathbb{Q} \to B \to \mathbb{Z}/6\mathbb{Z} \to 0.$$

Show that $B \simeq \mathbb{Q} \oplus \mathbb{Z}/6\mathbb{Z}$.

- (b) Find rational prime numbers p and q such that $\mathbb{Z}[i]/p\mathbb{Z}[i]$ is an integral domain and $\mathbb{Z}[i]/q\mathbb{Z}[i]$ contains zero divisors.
- 5. Let $K = \mathbb{Q}(\sqrt{2} \sqrt{3})$.
 - (a) Show that K/\mathbb{Q} is normal.
 - (b) Find the quadratic subfields of K.
 - (c) Compute $Gal(\mathbb{Q}(\sqrt{2}-\sqrt{3},\sqrt{5})/\mathbb{Q})).$
- 6. (a) Let G be a finite group and let A be a subgroup. Let r_1, \ldots, r_d be a set of coset representatives for G/A. Let $\rho: G \to GL(V)$ be a finite dimensional representation of G over the complex numbers and let W be a subspace of V that is stable under the action of A (that is, $\rho(A) \cdot W \subseteq W$). Let

$$U = \sum_{i=1}^{d} \rho(r_i) \cdot W.$$

Show that U is stable under the action of G.

(b) Assume that (ρ, V) is irreducible and that the subgroup A is abelian. Show that $\dim(V) \leq [G:A]$. (Hint: What are the irreducible representations of A?)