1. Let G be a finite group and let H be a subgroup.
 (a) Let $N = \{ g \in G | gHg^{-1} = H \}$. Show that the number of distinct subgroups of G
 of the form aHa^{-1} with $a \in G$ equals the index $[G : N]$.
 (b) Assume $H \neq G$. Show that $G \neq \cup_{a \in G} aHa^{-1}$.

2. Let $R \subset \mathbb{C}[X,Y]$ be the ring of polynomials of the form $a + Yg(X,Y)$ with $a \in \mathbb{C}$ and
 $g \in \mathbb{C}[X,Y]$ (so $X \not\in R$ but $3 + XY \in R$).
 (a) Show that R is not a unique factorization domain.
 (b) Show that R is not Noetherian.

3. Let R be a commutative ring with 1 and let M_1 and M_2 be distinct maximal ideals of R. Show that
 \[(R/M_1) \otimes_R (R/M_2) = 0.\]

4. Let $B(x,y)$ be a bilinear form on \mathbb{R}^n (so $B(ax_1 + bx_2, y) = aB(x_1, y) + bB(x_2, y)$ for
 $a, b \in \mathbb{R}$ and $x_1, x_2 \in \mathbb{R}^n$, and similarly for the second variable).
 (a) Show that there exists a unique linear transformation $A : \mathbb{R}^n \to \mathbb{R}^n$ such that
 $B(x, y) = \langle Ax, y \rangle$ for all $x, y \in \mathbb{R}^n$, where $\langle \cdot, \cdot \rangle$ is the usual inner product on \mathbb{R}^n.
 (b) Let $\{b_1, \ldots, b_n\}$ be an orthonormal basis of \mathbb{R}^n. Show that the sum $\sum_{i=1}^{n} B(b_i, b_i)$
 is independent of the choice of orthonormal basis $\{b_i\}$.

5. Let $K = \mathbb{R}(T)$ be the field of rational functions of one variable over \mathbb{R}, and let
 $L = \mathbb{R}(T^{1/4})$.
 (a) Is L/K a Galois extension? If it is, give a proof. If it is not, say why and give a
 Galois extension of K that contains L.
 (b) Find, with proofs, all intermediate fields F with $K \subset F \subset L$.

6. (a) Determine the character table of S_3, the group of permutations of 3 objects (proofs not needed).
 (b) Let V be the space of homogeneous polynomials of degree 2 in 3 variables with
 coefficients in \mathbb{C}. Note that V is a 6-dimensional vector space over \mathbb{C} with basis
 $\{X_iX_j | 1 \leq i \leq j \leq 3\}$. Let S_3 act on V by permuting the variables (so the 2-cycle
 $(1,2)$ maps $X_1X_2 + X_1X_3$ to $X_2X_1 + X_2X_3$). Determine the decomposition of this
 representation into irreducible representations of S_3.