DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August 1993

ALGEBRA (Ph.D. Version)

Instructions to the student

- a. Answer all six questions; each will be assigned a grade from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (not your name) on the outside of the booklet.
 - c. Keep scratch work on separate pages in the same booklet.
 - 1. Let G be a finite group and let H be a subgroup.
 - (a) Let $N = \{g \in G | gHg^{-1} = H\}$. Show that the number of distinct subgroups of G of the form aHa^{-1} with $a \in G$ equals the index [G:N].
 - (b) Assume $H \neq G$. Show that $G \neq \bigcup_{a \in G} aHa^{-1}$.
 - 2. Let $R \subset \mathbb{C}[X,Y]$ be the ring of polynomials of the form a+Yg(X,Y) with $a \in \mathbb{C}$ and $g \in \mathbb{C}[X,Y]$ (so $X \notin R$ but $3+XY \in R$).
 - (a) Show that R is not a unique factorization domain.
 - (b) Show that R is not Noetherian.
 - 3. Let R be a commutative ring with 1 and let M_1 and M_2 be distinct maximal ideals of R. Show that

$$(R/M_1) \otimes_R (R/M_2) = 0.$$

- 4. Let B(x,y) be a bilinear form on \mathbb{R}^n (so $B(ax_1 + bx_2, y) = aB(x_1, y) + bB(x_2, y)$ for $a, b \in \mathbb{R}$ and $x_1, x_2 \in \mathbb{R}^n$, and similarly for the second variable).
 - (a) Show that there exists a unique linear transformation $A : \mathbb{R}^n \to \mathbb{R}^n$ such that $B(x,y) = \langle Ax, y \rangle$ for all $x,y \in \mathbb{R}^n$, where $\langle \cdot, \cdot \rangle$ is the usual inner product on \mathbb{R}^n .
 - (b) Let $\{b_1, \ldots, b_n\}$ be an orthonormal basis of \mathbb{R}^n . Show that the sum $\sum_{i=1}^n B(b_i, b_i)$ is independent of the choice of orthonormal basis $\{b_i\}$.
- 5. Let $K = \mathbb{R}(T)$ be the field of rational functions of one variable over \mathbb{R} , and let $L = \mathbb{R}(T^{1/4})$.
 - (a) Is L/K a Galois extension? If it is, give a proof. If it is not, say why and give a Galois extension of K that contains L.
 - (b) Find, with proofs, all intermediate fields F with $K \subset F \subset L$.
- 6. (a) Determine the character table of S_3 , the group of permutations of 3 objects (proofs not needed).
 - (b) Let V be the space of homogeneous polynomials of degree 2 in 3 variables with coefficients in \mathbb{C} . Note that V is a 6-dimensional vector space over \mathbb{C} with basis $\{X_iX_j|1 \leq i \leq j \leq 3\}$. Let S_3 act on V by permuting the variables (so the 2-cycle (1,2) maps $X_1X_2 + X_1X_3$ to $X_2X_1 + X_2X_3$). Determine the decomposition of this representation into irreducible representations of S_3 .