DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August 1996

ALGEBRA (Ph.D. Version)

Instructions to the student

- a. Answer all six questions; each will be assigned a grade from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (not your name) on the outside of the booklet.
 - c. Keep scratch work on separate pages in the same booklet.
- 1. Let G be a finite group and suppose there is a subgroup H of odd order such that [G:H] is a power of 2.
 - (a) Show that all elements of G of odd order are contained in H if and only if H is normal in G.
 - (b) Give an example of a finite group G_1 where the elements of odd order form a subgroup of G_1 , and an example of a finite group G_2 where the elements of odd order do not form a subgroup of G_2 .
- 2. Let N be an $n \times n$ matrix with complex entries such that the transpose of N equals the complex conjugate of N.
 - (a) Let W be a subspace of \mathbb{C}^n such that $N(W) \subseteq W$. Let W^{\perp} be the orthogonal complement of W under the standard inner product on \mathbb{C}^n . Show that $N(W^{\perp}) \subseteq W^{\perp}$.
 - (b) Using part (a), show that N is diagonalizable (you may not use the theorem that says that a matrix that commutes with its conjugate transpose is diagonalizable).
- **3.** Let K be a subfield of the complex numbers containing a primitive cube root of unity ω . Let $f(X) = X^3 + aX^2 + bX + c \in K[X]$ and let α , β , γ be the roots (in \mathbb{C}) of f(X). Let $d = (\alpha \beta)(\alpha \gamma)(\beta \gamma)$ and let $e = \alpha + \omega\beta + \omega^2\gamma$. Assume that d and e are both nonzero.
 - (a) Show that $d^2 \in K$ and $e^3 \in K(d)$.
 - (b) Show that K(d, e) is the splitting field of f(X).
- **4.** Find all prime ideals of the ring $\mathbb{Z}[X]/(X^2)$.
- **5.** (a) Let R be a commutative ring with 1 and let S be a subset of R that contains 1 and is closed under multiplication. Let M be an R-module. Define $S^{-1}M$ to be the set of equivalence classes of pairs (s,m), where (s_1,m_1) and (s_2,m_2) are equivalent if there exists $s \in S$ with $s(s_2m_1 s_1m_2) = 0$. Addition is defined by $(s_1,m_1) + (s_2,m_2) = (s_1s_2,s_2m_1 + s_1m_2)$, and the 0-element is (1,0). The action of $S^{-1}R$ via (s,r)(s',m) = (ss',rm) makes $S^{-1}M$ into an $S^{-1}R$ -module. Show that the map

$$\phi: S^{-1}R \otimes_R M \to S^{-1}M$$
$$\sum (s_i, r_i) \otimes m_i \mapsto \sum (s_i, r_i m_i)$$

is a well-defined isomorphism of $S^{-1}R$ -modules.

(b) Let A be an abelian group. Show that the kernel of the map $A \to \mathbb{Q} \otimes_{\mathbb{Z}} A$, where

- $a \mapsto 1 \otimes a$, is exactly the torsion subgroup of A (the torsion subgroup is the set of elements of A of finite order).
- **6.** Let A and B be 2×2 complex matrices such that $A^2 = B^3 = I$ (=the 2×2 identity matrix) and $ABA = B^{-1}$. Assume Tr(B) = -1. Let C be a matrix that commutes with both A and B. Show that C must be a scalar matrix. (Hint: the representation theory of finite groups might be useful)