## DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM JANUARY 1991

ALGEBRA (Ph.D. Version)

## Instructions to the student

- a. Answer all six questions; each will be assigned a grade from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (not your name) on the outside of the booklet.
  - c. Keep scratch work on separate pages in the same booklet.
  - 1. (a) Let G be a finite group and let K be a normal subgroup. Assume that i = [G : K] and |K| are relatively prime. Show that

$$K = \{x^i | x \in G\}.$$

- (b) Give an example to show that the conclusion of part (a) can be false if K is not assumed to be normal in G.
- 2. Let A and B be  $n \times n$  matrices with complex entries.
  - (a) Show that if A is similar to B then A and B have the same minimal polynomial and the same characteristic polynomial.
  - (b) Show that if n = 3 and A and B have the same minimal polynomials and the same characteristic polynomials, then A and B are similar.
  - (c) Give an example of A and B having the same minimal polynomials and the same characteristic polynomials, but with A and B not similar.
- 3. Recall that a module P is called projective if whenever there is a surjection  $A \to B$  and a map  $P \to B$  then there is a map  $P \to A$  such that the following diagram commutes:

$$\begin{array}{c}
P \\
\downarrow \\
A \longrightarrow B \longrightarrow 0
\end{array}$$

(a) Consider the diagram

where the rows are exact, P and Q are projective, and id denotes the identity map on C. Show that there exist maps  $\alpha: P \to A$  and  $\beta: Q \to B$  such that the resulting diagram commutes.

(b) Show by an example that the conclusion of part (a) can be false if P and Q are not assumed to be projective.

- 4. Let R be a commutative ring with identity and let I and J be ideals of R. Then R/I and R/J are R-modules in the natural way.
  - (a) Show that every element of  $R/I \otimes_R R/J$  can be written in the form  $(1+I) \otimes (r+J)$ .
  - (b) Show that the map

$$R/I \otimes_R R/J \to R/(I+J)$$
$$\sum (r_i+I) \otimes (s_i+J) \mapsto \sum r_i s_i + (I+J)$$

is a well-defined isomorphism.

- 5. Let L/K be a finite extension of fields and let F be a field containing K. Let LF be the compositum of L and F (so LF = the smallest field containing L and F; we assume all the fields L, K, F are contained inside some larger field).
  - (a) Assume L/K is Galois. Show that LF/F is Galois.
  - (b) Assume L/K is Galois. Show that [LF:F] divides [L:K].
  - (c) Give an example to show that the conclusion of part (b) can be false if L/K is not assumed to be Galois.
- 6. Let R be a commutative Noetherian ring with 1. Let  $f = \sum_{n\geq 0} a_n X^n \in R[[X]]$  (=the ring of power series with coefficients in R). Show that f is nilpotent if and only if each  $a_n$  is nilpotent.