DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January 1993

ALGEBRA (Ph.D. Version)

Instructions to the student

- a. Answer all six questions; each will be assigned a grade from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (not your name) on the outside of the booklet.
 - c. Keep scratch work on separate pages in the same booklet.
 - 1. (a) Let G be a group and let C be its center. Suppose G/C is cyclic. Show that G must be abelian.
 - (b) Let G be a group of order p^2n , where p is prime and $p^2 \mid /n$. Suppose G has a subgroup of order n that is contained in the center of G. Show that G is abelian.
 - (c) Let p and q be distinct primes and suppose G is a non-abelian group of order p^2q . Show that the center of G has order 1 or p.
 - 2. Let $M_n(\mathbb{R})$ be the set of $n \times n$ real matrices, regarded as a vector space of dimension n^2 over \mathbb{R} . Let $T: M_n(\mathbb{R}) \to \mathbb{R}$ be a linear functional. Show that there exists a unique matrix $A \in M_n(\mathbb{R})$ such that T(X) = Trace(AX) for all $X \in M_n(\mathbb{R})$.
 - 3. Let R be a commutative ring with 1 and let S be a non-empty subset of R closed under multiplication, with $0 \notin S$. Let I be maximal among the set of ideals whose intersection with S is empty. Show that I is a prime ideal.
 - 4. (a) Let $f:A\to B$ be a homomorphism of abelian groups, and let $C\subseteq A$ be a subgroup with $[A:C]<\infty$. Let $K=\mathrm{Ker}\ f$ and $L=K\cap C$. Show that

$$[A:C] = [f(A):f(C)][K:L].$$

- (b) Formulate and prove an analogous statement for vector spaces.
- 5. Let K be a field of characteristic not equal to 2 or 5, and let $a, b \in K$ satisfy $a^2 \neq b^5$, $a \neq 0, b \neq 0$. Let $f(X) = X^{10} 2aX^5 + b^5$.
 - (a) Show that f is a separable polynomial.
 - (b) Let L be the splitting field of f over K. Show that $[L:K] \leq 40$. (Note that if x is a root of f, then so is b/x.)
- 6. The following is the character table of a group G ("sizes" refers to the sizes of the conjugacy classes $\{1\}$, A, B, C, D; the characters of G are χ_1, \ldots, χ_5):
 - (a) Compute β .
 - (b) Let G^c be the commutator subgroup of G (so G^c =the subgroup generated by $\{aba^{-1}b^{-1} \mid a,b \in G\}$). Show that G/G^c is isomorphic to the Klein 4-group $\mathbb{Z}_2 \times \mathbb{Z}_2$.