DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January 1995

ALGEBRA (Ph.D. Version)

Instructions to the student

- a. Answer all six questions; each will be assigned a grade from 0 to 10.
- b. Use a different page for each question. Write the problem number and your **code number (not** your name) on the outside of the booklet.
 - **1.** Let G and H be groups and let N be a normal subgroup of $G \times H$. Suppose that $N \cap (G \times 1) = 1$ and $N \cap (1 \times H) = 1$. Show that N is contained in the center of $G \times H$.
- **2.** Let V be a finite-dimensional vector space over a field, and let $T: V \to V$ be a linear transformation. Show that there is a positive integer n such that $\text{Ker}(T^n) \cap \text{Im}(T^n) = 0$.
- **3.** Let L be a subfield of $\mathbb C$ such that $L/\mathbb Q$ is a finite Galois extension with $\operatorname{Gal}(L/\mathbb Q)$ cyclic. Let K be a subfield of L and suppose that $K \not\subseteq \mathbb R$.
 - (a) Show that $[K : \mathbb{Q}]$ is even.
 - (b) Show that [L:K] is odd.
- **4.** Let R be a commutative ring with 1 and let Q be a proper ideal of R. We say that Q is primary if it satisfies the following condition: Let $x, y \in R$ with $xy \in Q$. If $x \notin Q$ then $y^n \in Q$ for some positive integer n (depending on y). Define the radical of Q by

$$rad(Q) = \{x \in R \mid x^n \in Q \text{ for some positive integer } n\}.$$

Note that rad(Q) is also a proper ideal of R (do not prove this). Prove:

- (a) If Q is primary then rad(Q) is a prime ideal.
- (b) Suppose R is a principal ideal domain. Find all primary ideals of R (prove that all primary ideals are on your list, and prove that all ideals on your list are primary).
- **5.** Let R be a commutative ring with 1. An R-module F is called *flat* if whenever $f: M \to N$ is an injective homomorphism of R-modules, the induced map $M \otimes_R F \to N \otimes_R F$ is also injective. Suppose R is a principal ideal domain. Show that a finitely generated R-module is flat if and only if it is torsion free.
- **6.** Let p be an odd prime. For $x, y, \text{ and } z \in \mathbb{F}_p$, the finite field with p elements, let

$$[x, y, z] = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in GL_3(\mathbb{F}_p).$$

Let G be the finite group

$$G = \{ [x, y, z] \mid x, y, z \in \mathbb{F}_p \}.$$

A straightforward calculation shows that

$$Z = \{ [0, 0, z] \mid z \in \mathbb{F}_p \}$$

is the center of G and is the commutator subgroup of G (do not prove these statements). Let $\rho: G \longrightarrow GL(V)$ be an *irreducible* representation of G, where V is a complex vector space of dimension n_V .

- (a) Show that there is a homomorphism $\lambda_V: Z \longrightarrow \mathbb{C}^{\times}$ such that $\rho(z)v = \lambda_V(z)v$ for all $z \in Z$ and for all $v \in V$.
- (b) Show that $n_V = \dim_{\mathbb{C}} V = 1$ if and only if $\lambda_V(z) = 1$ for all $z \in Z$.
- (c) How many distinct 1 dimensional irreducible representations of G are there?
- (d) Using the fact that $n_V \mid |G|$, for any irreducible representation V, determine the number of irreducible (non-isomorphic) representations of G and their dimensions.