## DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August 2011

## ALGEBRA (Ph D Version)

## Instructions to the student

- a. Answer all six questions; each will be assigned a grade from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your **code number** (not your name) on the outside of the booklet.
  - c. Keep scratch work on separate pages in the same booklet.
  - 1. (a) Let G be a group of order 27. Suppose G acts on a set X with 50 elements. Show that there are at least two elements of X that are fixed by G.
    - (b) Given an exact sequence of groups

$$1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$$

with |A|=50 and |C|=27, show that there exists a subgroup  $D\subset B$  that maps isomorphically to C.

- (c) Let A, B, C be as in part (b). Assume that A is abelian. Show that the center of B is nontrivial.
- 2. (a) Let S be a finite subset of a field with  $0 \notin S$ . Suppose that there is an integer  $m \ge 2$  such that the mth power map maps S into S. Show that every element of S is a root of unity.
  - (b) Let  $n \ge 1$  and let M be an  $n \times n$  invertible complex matrix. Suppose that  $M^m$  is similar to (that is, conjugate to) M for some  $m \ge 2$ . Show that the eigenvalues of M are roots of unity.
- 3. Let R be a unique factorization domain with field of fractions K. Let  $\pi \in R$  be irreducible, and let

$$R_{\pi} = \{a/b \in K \mid a, b \in R, \pi \nmid b\}.$$

Let  $0 \neq x \in R$  and let  $\pi^r$  be the highest power of  $\pi$  dividing x. Show that

$$xR_{\pi}\cap R=\pi^{r}R$$

- 4. Let R be a commutative ring with 1 and let M be an R-module. Recall that M is injective if whenever  $\phi: N_1 \to M$  is an R-module homomorphism, and  $N_1 \subseteq N_2$  is an inclusion of R-modules, then  $\phi$  can be extended to  $\phi: N_2 \to M$ . It is well known that every R-module is isomorphic to a submodule of an injective R-module.
  - (a) Suppose  $M_i$ ,  $i \in I$ , for some index set I, is a collection of R-modules and  $R \to \bigoplus_{i \in I} M_i$  is a homomorphism of R-modules. Show that there is a finite subset F of I such that the image of R is contained in  $\bigoplus_{i \in F} M_i$ .
  - (b) Suppose that  $J_1 \subseteq J_2 \subseteq J_3$  is an ascending chain of ideals in R and let  $J = \bigcup_{i \ge 1} J_i$ . For each i, let  $J/J_i$  be isomorphic to a submodule of an injective module  $M_i$ . Assume that  $\bigoplus_{i=1}^{\infty} M_i$  is an injective R-module. Show that there is an N such that the image of J under the natural map

$$J \to \bigoplus_{i=1}^{\infty} J/J_i \to \bigoplus_{i=1}^{\infty} M_i$$

is contained in  $\bigoplus_{i \leq N} M_{i}$  (*Hint*: injectivity is needed here.)

- (c) Show that if R has the property that every countable direct sum of injective R-modules is injective then R is Noetherian.
- 5. Let  $\zeta$  be a primitive 11-th root of unity and let  $\alpha = \zeta + \zeta^3 + \zeta^4 + \zeta^5 + \zeta^9$ . It is well known that  $\operatorname{Gal}(\mathbf{Q}(\zeta)/\mathbf{Q}) \simeq (\mathbf{Z}/11\mathbf{Z})^{\times}$ , where  $k \mod 11$  corresponds to the map  $\zeta \mapsto \zeta^k$ .

  (a) Let S be a subset of  $\{1, \zeta, \zeta^2, \dots, \zeta^{10}\}$ . Show that if S has 10 elements then S is linearly
  - independent
  - (b) Show that  $\alpha \notin \mathbf{Q}$ .
  - (c) Show that  $[\mathbf{Q}(\alpha):\mathbf{Q}]=2$ .
- 6. (a) Let G be a finite group such that G/H is abelian whenever H is a nontrivial normal subgroup of G. Let

$$\rho: G \longrightarrow GL_n(\mathbf{C})$$

be an irreducible representation of G with  $n \geq 2$ . Show that  $\rho$  is injective.

(b) Give an example of a finite group G and an irreducible representation

$$\rho: G \longrightarrow GL_n(\mathbf{C})$$

with  $n \geq 2$  such that  $\rho$  is not injective