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1. Let G be a group of order 165 = 11 · 5 · 3.
(a) Show that G has a normal subgroup N of order 11.
(b) Show that with N as in (a), G/N is abelian, and thus that G is solvable.
(c) Classify all groups of order 165 up to isomorphism.

Solution. (a) By the Sylow theorems, G has a subgroup N of order 11, and the number of conjugates of
this subgroup divides 15 and is congruent to 1 mod 11. Hence N is normal, and G/N is a group of order
15. (b) Then G/N contains a Sylow 5-subgroup of order 5, and the number of conjugates of this subgroup
divides 3 and is congruent to 1 mod 5. So the Sylow 5-subgroup of N is normal, and also central since 3
does not divide 5 − 1. So G/N is abelian, and is necessarily isomorphic to (Z/5) × (Z/3) (since the Sylow
subgroups are both cyclic and central). Since G is an extension of an abelian group by an abelian group, it
is solvable. (c) Furthermore, the extension

1→ N → G→ G/N → 1

splits. To see this, first note that a Sylow 3-subgroup of G/N lifts to a Sylow 3-subgroup of G commuting
with N , since 3 does not divide 11 − 1. So G has an abelian normal subgroup H of order 33, the inverse
image in G of the Sylow 3-subgroup of G/N . Then G/H ∼= Z/5 and a Sylow 5-subgroup of G gives a
semidirect product decomposition of G as H o (Z/5). Furthermore, since the subgroup of order 3 in H is
characteristic and 5 does not divide 3− 1, a Sylow 5-subgroup of G centralizes the Sylow 3-subgroup of H.
Hence G splits as a product (Z/3)×(Z/11oZ/5), for some action of a cyclic 5-group on a cyclic 11-group. It
remains to understand the possible actions. Since the automorphism group of a cyclic group of prime order
p is cyclic, of order p− 1, there is (up to changes of generators) exactly one non-trivial homomorphism from
Z/5 to the automorphism group of Z/11. Hence there are exactly two possibilities for G up to isomorphism:
(Z/11)× (Z/5)× (Z/3), and (Z/11oZ/5)× (Z/3) (non-trivial semidirect product). Since 45 ≡ 1 (mod 11),
the second of these groups has generators a, b, c, with a11 = 1, b5 = 1, c3 = 1, c central, and bab−1 = a4.

2. Suppose A is a 3×3 matrix with entries in a field F of characteristic 0, and assume TrA = 6, TrA2 = 14,
and detA = 6. (Tr denotes the trace.) Prove that A is similar over F to the diagonal matrix 1 0 0

0 2 0
0 0 3

 .

Solution. Let x1, x2, x3 be the roots of the characteristic polynomial of A (in some splitting field). Then
the given data tells us that x1 + x2 + x3 = 6, that x2

1 + x2
2 + x2

3 = 14, and that x1x2x3 = 6. But

(x1 + x2 + x3)2 = x2
1 + x2

2 + x2
3 + 2(x1x2 + x1x3 + x2x3),

so x1x2 + x1x3 + x2x3 = (62 − 14)/2 = 22/2 = 11. (Note that we’ve used the assumption that F does not
have characteristic 2.) So the characteristic polynomial of A is x3 − 6x2 + 11x− 6, the same as for 1 0 0

0 2 0
0 0 3

 ,
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and factors as (x − 1)(x − 2)(x − 3). Since this has distinct roots (again we’re using the fact that the
characteristic is 6= 2) and the roots lie in the prime field, A is diagonalizable over F and similar to the
indicated matrix.

3. You may assume the fact that the ring R = Z[ω], where ω is a primitive cube root of unity, is a PID —
in fact, a Euclidean ring with respect to the norm N defined by

N(a+ bω) = (a+ bω)(a+ bω2) = a2 − ab+ b2.

Let p ∈ Z be an ordinary prime number. Show that:
(a) An element y ∈ R is a unit in R if and only if N(y) = 1.
(b) p can be written in the form a2 − ab+ b2, a, b ∈ Z, if and only if the ideal (p) is not prime in R.
(c) The ideal (p) is not prime in R if and only if the polynomial x2 + x+ 1 is reducible in Fp[x].

Deduce that:
(d) (3) and (7) are not prime in R, but that (2) and (5) are prime in R.

Solution. (a) is a general fact about Euclidean rings: If N(y) = 1, then since also N(1) = N(12) =
N(1)N(1) and thus N(1) = 1, the division algorithm yields 1 = yz + r for some z, r ∈ R with N(r) < 1, so
r = 0 and y is a unit. The other direction is even easier: if y is a unit, then 1 = N(1) = N(y)N(y−1), so
N(y) = 1.

(b) If p is irreducible in R, then (p) is prime. Otherwise p has a nontrivial factorization p = yz with
N(y) and N(z) proper divisors of N(p). But N(p) = p2, so this implies there is some y = a+ bω ∈ R with
N(y) = a2 − ab+ b2 = p.

(c) Note that R = Z[x]/(x2 + x+ 1) (since x2 + x+ 1 is the minimal polynomial of ω over Q), so that
R/(p) = Fp[x]/(x2 + x+ 1). If x2 + x+ 1 is irreducible in Fp[x], then it generates a maximal ideal, so R/(p)
is a field, and (p) is a prime ideal in R. But if x2 + x+ 1 is reducible in Fp[x], then R/(p) is not an integral
domain, and so (p) is not a prime ideal.

(d) The polynomial f(x) = x2 + x + 1 is irreducible in Fp[x] for p = 2 or 5, since f(0) = 1, f(1) = 3,
f(2) = 7, f(3) = 13, f(4) = 21, and none of these values is divisible by 2 or 5. But f(1) ≡ 0 (mod 3) and
f(2) ≡ 0 (mod 7), so f(x) = x2 + x+ 1 is reducible in Fp[x] for p = 3 or 7. Now apply (c).

4. Let R be a commutative ring. An R-module M if called flat if, for all short exact sequences

(1) 0→ A→ B → C → 0

of R-modules, the sequence

(2) 0→M ⊗R A→M ⊗R B →M ⊗R C → 0

is exact. An R-module M is called faithfully flat if M is flat, and if in addition, exactness of sequence (2)
implies (1) is exact.

(a) Show that a free R-module is faithfully flat.
(b) Take R = Z. Show that the R-module Z/(2) is not flat, and that the R-module Q is flat but not

faithfully flat.

Solution. (a) If M is free, say on a set X, then tensoring with M is the same as taking a direct sum of
copies indexed by X. So given A

α→ B, M ⊗R A
1⊗α−→ M ⊗R B is the same as

⊕
X(A α→ B). Thus one of

these is injective if and only if the other one is, and M is faithfully flat.
(b) Z/(2) is not flat since

0→ Z
2→ Z→ Z/(2)→ 0

is exact, but when we tensor with Z/(2), this becomes

0→ Z/(2) 0→ Z/(2)
∼=→ Z/(2)→ 0,
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which is not exact on the left.
To show Q is flat as a Z-module, one can observe that given x1, . . . , xn ∈ Q, they have a “common

denominator” d, and then we can write xi = yi
d with yi ∈ Z, i.e., all the xi lie in the cyclic subgroup

generated by 1
d . Since tensor product with anything is right exact, we only need to check exactness on the

left. Suppose a1, . . . , an ∈ A and α : A→ B is injective. Then

(1⊗ α)
(∑
i

xi ⊗ ai
)

=
1
d

∑
i

yi ⊗ α(ai) =
1
d
⊗ α

(∑
i

yiai
)
.

If this is 0 in the Q-vector space Q⊗ZB, then α
(∑

yiai
)

is a torsion element of B, so m ·α
(∑

yiai
)

= 0 for
some m, i.e., α

(∑
myiai

)
= 0, so

∑
myiai = 0 by injectivity of α. Then 0 = m

d

∑
yiai = m ·

(∑
xi ⊗ ai

)
.

So
∑
xi ⊗ ai is a torsion element of the Q-vector space Q⊗Z A and so is 0. So (1⊗ α) is injective.

Finally, to see that Q is not faithfully flat, observe that if A = B = Z/2, the 0-map A → B is not
injective, whereas Q⊗Z A = Q⊗Z B = 0, so Q⊗Z A

1⊗0−→ Q⊗Z B is injective. Thus Q is not faithfully flat.

5. Let f(x) = x5 − 6x+ 2.
(a) Show that f is irreducible in Q[x], and that in C, it has exactly three real roots. (For the last

assertion you need freshman calculus.)
(b) Deduce that if L is the splitting field of f over Q, G = Gal(L/Q), when identified with a subgroup

of S5, contains a 5-cycle and a 2-cycle. (Remark: This then implies that G = S5, but you don’t
need to prove this.)

Solution. (a) Irreducibility follows by Eisenstein with p = 2. Now f ′(x) = 5x4 − 6, which is negative for
|x| < 4

√
6/5 and positive for |x| > 4

√
6/5. So f is monotone on three intervals covering the real line, and

so can have at most 3 real roots. On the other hand, it does have at least 3 real roots by the intermediate
value theorem, since f(x) is continuous and f(−2) = −32 + 12 + 2 < 0, f(0) = 2 > 0, f(1) = 1− 6 + 2 < 0,
and f(2) = 32− 12 + 2 > 0. So f has exactly 3 real roots.

(b) Irreducibility implies G acts transitively on the 5 roots of f in C. That means the order of G must
be divisible by 5, so G contains an element of order 5. But every element of order 5 in S5 is a 5-cycle. Since
f has exactly two non-real roots in C, and f has real coefficients, there is one pair of complex conjugate
non-real roots, and complex conjugation gives an element of G interchanging two roots and fixing the other
three, in other words, a 2-cycle.

6. Let G be a finite group and let g ∈ G.
(a) Let π : G → Mn(C) be a representation of G and let χπ be its character. Show that χπ(g−1) =

χπ(g).
(b) Prove that g is conjugate in G to g−1 if and only if the following condition is satisfied: for every

irreducible complex representation π of G, the character χπ of π is real-valued on g.
(c) Show that the condition of (b) is satisfied for all elements of Sn, and thus that all characters of Sn

are real-valued.

Solution. (a) After “averaging” an inner product on Cn with respect to the action of G, we may assume
that the action of G is unitary. Thus for each g ∈ G, π(g−1) = π(g)−1 = π(g)

t
. Taking traces, we obtain

χπ(g−1) = χπ(g).
(b) If g is conjugate to g−1, then for each irreducible representation π of G, we have χπ(g) = χπ(g−1) =

χπ(g), and thus χπ(g) is real. Conversely, if χπ(g) is real for all g ∈ G, then χπ(g) = χπ(g−1) for every
irreducible representation π of G. Since the irreducible representations separate conjugacy classes (by the
Schur orthogonality relations), it follows that g is conjugate to g−1 for all g ∈ G.

(c) Each element of Sn has a unique representation as a product of disjoint cycles. (The uniqueness is
up to the order of the factors, since they commute with one another.) Say g is a product of disjoint cycles
of orders n1, n2, . . . , i.e.,

g = (i1i2 . . . in1)(j1j2 . . . jn2) . . . .

Then
(i1in1)(i2in1−1) . . . (j1jn2)(j2jn2−1) . . .

is an element of order 2 conjugating g to g−1. By (b), it follows that all characters of Sn are real-valued.
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