1. Let G be a group of order $165 = 11 \cdot 5 \cdot 3$.
 (a) Show that G has a normal subgroup N of order 11.
 (b) Show that with N as in (a), G/N is abelian, and thus that G is solvable.
 (c) Classify all groups of order 165 up to isomorphism.

Solution. (a) By the Sylow theorems, G has a subgroup N of order 11, and the number of conjugates of this subgroup divides 15 and is congruent to 1 mod 11. Hence N is normal, and G/N is a group of order 15. (b) Then G/N contains a Sylow 5-subgroup of order 5, and the number of conjugates of this subgroup divides 3 and is congruent to 1 mod 5. So the Sylow 5-subgroup of N is normal, and also central since 3 does not divide 5. So G/N is abelian, and is necessarily isomorphic to $(\mathbb{Z}/5) \times (\mathbb{Z}/3)$ (since the Sylow subgroups are both cyclic and central). Since G is an extension of an abelian group by an abelian group, it is solvable. (c) Furthermore, the extension

$$1 \to N \to G \to G/N \to 1$$

splits. To see this, first note that a Sylow 3-subgroup of G/N lifts to a Sylow 3-subgroup of G commuting with N, since 3 does not divide 11 – 1. So G has an abelian normal subgroup H of order 33, the inverse image in G of the 3-subgroup of G/N. Then $G/H \cong \mathbb{Z}/5$ and a Sylow 5-subgroup of G gives a semidirect product decomposition of G as $H \rtimes (\mathbb{Z}/5)$. Furthermore, since the subgroup of order 3 in H is characteristic and 5 does not divide 3 – 1, a Sylow 5-subgroup of G centralizes the Sylow 3-subgroup of H. Hence G splits as a product $(\mathbb{Z}/3) \times (\mathbb{Z}/11 \rtimes \mathbb{Z}/5)$, for some action of a cyclic 5-group on a cyclic 11-group. It remains to understand the possible actions. Since the automorphism group of a cyclic group of prime order p is cyclic, of order $p – 1$, there is (up to changes of generators) exactly one non-trivial homomorphism from $\mathbb{Z}/5$ to the automorphism group of $\mathbb{Z}/11$. Hence there are exactly two possibilities for G up to isomorphism: $(\mathbb{Z}/11) \times (\mathbb{Z}/5) \times (\mathbb{Z}/3)$, and $(\mathbb{Z}/11 \rtimes \mathbb{Z}/5) \times (\mathbb{Z}/3)$ (non-trivial semidirect product). Since $4^5 \equiv 1 \pmod{11}$, the second of these groups has generators a, b, c, with $a^{11} = 1$, $b^5 = 1$, $c^3 = 1$, c central, and $bab^{-1} = a^4$.

2. Suppose A is a 3×3 matrix with entries in a field F of characteristic 0, and assume $\text{Tr} A = 6$, $\text{Tr} A^2 = 14$, and $\det A = 6$. (Tr denotes the trace.) Prove that A is similar over F to the diagonal matrix

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix}.$$

Solution. Let x_1, x_2, x_3 be the roots of the characteristic polynomial of A (in some splitting field). Then the given data tells us that $x_1 + x_2 + x_3 = 6$, that $x_1^2 + x_2^2 + x_3^2 = 14$, and that $x_1x_2x_3 = 6$. But

$$(x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2(x_1x_2 + x_1x_3 + x_2x_3),$$

so $x_1x_2 + x_1x_3 + x_2x_3 = (6^2 - 14)/2 = 22/2 = 11$. (Note that we’ve used the assumption that F does not have characteristic 2.) So the characteristic polynomial of A is $x^3 - 6x^2 + 11x - 6$, the same as for

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{pmatrix},$$
and factors as \((x - 1)(x - 2)(x - 3)\). Since this has distinct roots (again we’re using the fact that the characteristic is \(\neq 2\)) and the roots lie in the prime field, \(A\) is diagonalizable over \(F\) and similar to the indicated matrix.

3. You may assume the fact that the ring \(R = \mathbb{Z}[\omega]\), where \(\omega\) is a primitive cube root of unity, is a PID — in fact, a Euclidean ring with respect to the norm \(N\) defined by

\[
N(a + b\omega) = (a + b\omega)(a + b\omega^2) = a^2 - ab + b^2.
\]

Let \(p \in \mathbb{Z}\) be an ordinary prime number. Show that:

(a) An element \(y \in R\) is a unit in \(R\) if and only if \(N(y) = 1\).

(b) \(p\) can be written in the form \(a^2 - ab + b^2\), \(a, b \in \mathbb{Z}\), if and only if the ideal \((p)\) is not prime in \(R\).

(c) The ideal \((p)\) is not prime in \(R\) if and only if the polynomial \(x^2 + x + 1\) is reducible in \(\mathbb{F}_p[x]\).

Deduce that:

(d) (3) and (7) are not prime in \(R\), but that (2) and (5) are prime in \(R\).

Solution. (a) is a general fact about Euclidean rings: If \(N(y) = 1\), then since also \(N(1) = N(1^2) = N(1)N(1)\) and thus \(N(1) = 1\), the division algorithm yields \(1 = yz + r\) for some \(z, r \in R\) with \(N(r) < 1\), so \(r = 0\) and \(y\) is a unit. The other direction is even easier: if \(y\) is a unit, then \(1 = N(1) = N(y)N(y^{-1})\), so \(N(y) = 1\).

(b) If \(p\) is irreducible in \(R\), then \((p)\) is prime. Otherwise \(p\) has a nontrivial factorization \(p = yz\) with \(N(y)\) and \(N(z)\) proper divisors of \(N(p)\). But \(N(p) = p^2\), so this implies there is some \(y = a + b\omega \in R\) with \(N(y) = a^2 - ab + b^2 = p\).

(c) Note that \(R = \mathbb{Z}[x]/(x^2 + x + 1)\) (since \(x^2 + x + 1\) is the minimal polynomial of \(\omega\) over \(\mathbb{Q}\)), so that \(R/(p) = \mathbb{F}_p[x]/(x^2 + x + 1)\). If \(x^2 + x + 1\) is irreducible in \(\mathbb{F}_p[x]\), then it generates a maximal ideal, so \(R/(p)\) is a field, and \((p)\) is a prime ideal in \(R\). But if \(x^2 + x + 1\) is reducible in \(\mathbb{F}_p[x]\), then \(R/(p)\) is not an integral domain, and so \((p)\) is not a prime ideal.

(d) The polynomial \(f(x) = x^2 + x + 1\) is irreducible in \(\mathbb{F}_p[x]\) for \(p = 2\) or 5, since \(f(0) = 1, f(1) = 3, f(2) = 7, f(3) = 13, f(4) = 21\), and none of these values is divisible by 2 or 5. But \(f(1) \equiv 0 \pmod{3}\) and \(f(2) \equiv 0 \pmod{7}\), so \(f(x) = x^2 + x + 1\) is reducible in \(\mathbb{F}_p[x]\) for \(p = 3\) or 7. Now apply (c).

4. Let \(R\) be a commutative ring. An \(R\)-module \(M\) if called flat if, for all short exact sequences

\[
0 \to A \to B \to C \to 0
\]

of \(R\)-modules, the sequence

\[
0 \to M \otimes_R A \to M \otimes_R B \to M \otimes_R C \to 0
\]

is exact. An \(R\)-module \(M\) is called faithfully flat if \(M\) is flat, and if in addition, exactness of sequence (2) implies (1) is exact.

(a) Show that a free \(R\)-module is faithfully flat.

(b) Take \(R = \mathbb{Z}\). Show that the \(R\)-module \(\mathbb{Z}/(2)\) is not flat, and that the \(R\)-module \(\mathbb{Q}\) is flat but not faithfully flat.

Solution. (a) If \(M\) is free, say on a set \(X\), then tensoring with \(M\) is the same as taking a direct sum of copies indexed by \(X\). So given \(A \overset{\alpha}{\to} B, M \otimes_R A \overset{1\otimes \alpha}{\to} M \otimes_R B\) is the same as \(\bigoplus_X (A \overset{\alpha}{\to} B)\). Thus one of these is injective if and only if the other one is, and \(M\) is faithfully flat.

(b) \(\mathbb{Z}/(2)\) is not flat since

\[
0 \to \mathbb{Z} \overset{2}{\to} \mathbb{Z} \to \mathbb{Z}/(2) \to 0
\]

is exact, but when we tensor with \(\mathbb{Z}/(2)\), this becomes

\[
0 \to \mathbb{Z}/(2) \overset{0}{\to} \mathbb{Z}/(2) \overset{2}{\to} \mathbb{Z}/(2) \to 0,
\]

2
which is not exact on the left.

To show \(Q \) is flat as a \(\mathbb{Z} \)-module, one can observe that given \(x_1, \ldots, x_n \in Q \), they have a “common denominator” \(d \), and then we can write \(x_i = \frac{y_i}{d} \) with \(y_i \in \mathbb{Z} \), i.e., all the \(x_i \) lie in the cyclic subgroup generated by \(\frac{1}{d} \). Since tensor product with anything is right exact, we only need to check exactness on the left. Suppose \(a_1, \ldots, a_n \in A \) and \(\alpha : A \to B \) is injective. Then

\[
(1 \otimes \alpha) \left(\sum_i x_i \otimes a_i \right) = \frac{1}{d} \sum_i y_i \otimes (\alpha(a_i)) = \frac{1}{d} \otimes \alpha \left(\sum_i y_i a_i \right).
\]

If this is 0 in the \(\mathbb{Q} \)-vector space \(Q \otimes \mathbb{Z} B \), then \(\alpha \left(\sum_i y_i a_i \right) \) is a torsion element of \(B \), so \(m \cdot \alpha \left(\sum_i y_i a_i \right) = 0 \) for some \(m \), i.e., \(\alpha \left(\sum_i m y_i a_i \right) = 0 \), so \(\sum_i m y_i a_i = 0 \) by injectivity of \(\alpha \). Then \(0 = \frac{m}{d} \sum_i y_i a_i = m \cdot \left(\sum_i x_i \otimes a_i \right) \).

Finally, to see that \(Q \) is not faithfully flat, observe that if \(A = B = \mathbb{Z}/2 \), the 0-map \(A \to B \) is not injective, whereas \(Q \otimes \mathbb{Z} A = Q \otimes \mathbb{Z} B = 0 \), so \(Q \otimes \mathbb{Z} A \) is injective. Thus \(Q \) is not faithfully flat.

5. Let \(f(x) = x^5 - 6x + 2 \).

(a) Show that \(f \) is irreducible in \(\mathbb{Q}[x] \), and that in \(\mathbb{C} \), it has exactly three real roots. (For the last assertion you need freshman calculus.)

(b) Deduce that if \(L \) is the splitting field of \(f \) over \(\mathbb{Q} \), \(G = \text{Gal}(L/\mathbb{Q}) \), when identified with a subgroup of \(S_5 \), contains a 5-cycle and a 2-cycle. (Remark: This then implies that \(G \neq S_5 \), but you don’t need to prove this.)

Solution. (a) Irreducibility follows by Eisenstein with \(p = 2 \). Now \(f'(x) = 5x^4 - 6 \), which is negative for \(|x| < \sqrt[4]{6/5} \) and positive for \(|x| > \sqrt[4]{6/5} \). So \(f \) is monotone on three intervals covering the real line, and so can have at most 3 real roots. On the other hand, it does have at least 3 real roots by the intermediate value theorem, since \(f(x) \) is continuous and \(f(-2) = -32 + 12 + 2 < 0 \), \(f(0) = 2 > 0 \), \(f(1) = 1 - 6 + 2 < 0 \), and \(f(2) = 32 - 12 + 2 > 0 \). So \(f \) has exactly 3 real roots.

(b) Irreducibility implies \(G \) acts transitively on the 5 roots of \(f \) in \(\mathbb{C} \). That means the order of \(G \) must be divisible by 5, so \(G \) contains an element of order 5. But every element of order 5 in \(S_5 \) is a 5-cycle. Since \(f \) has exactly two non-real roots in \(\mathbb{C} \), and \(f \) has real coefficients, there is one pair of complex conjugate non-real roots, and complex conjugation gives an element of \(G \) interchanging two roots and fixing the other three, in other words, a 2-cycle.

6. Let \(G \) be a finite group and let \(g \in G \).

(a) Let \(\pi : G \to M_n(\mathbb{C}) \) be a representation of \(G \) and let \(\chi_\pi \) be its character. Show that \(\chi_\pi(g^{-1}) = \overline{\chi_\pi(g)} \).

(b) Prove that \(g \) is conjugate in \(G \) to \(g^{-1} \) if and only if the following condition is satisfied: for every irreducible complex representation \(\pi \) of \(G \), the character \(\chi_\pi \) of \(\pi \) is real-valued on \(g \).

(c) Show that the condition of (b) is satisfied for all elements of \(S_n \), and thus that all characters of \(S_n \) are real-valued.

Solution. (a) After “averaging” an inner product on \(\mathbb{C}^n \) with respect to the action of \(G \), we may assume that the action of \(G \) is unitary. Thus for each \(g \in G \), \(\pi(g^{-1}) = \pi(g)^{-1} = \overline{\pi(g)} \). Taking traces, we obtain \(\chi_\pi(g^{-1}) = \overline{\chi_\pi(g)} \).

(b) If \(g \) is conjugate to \(g^{-1} \), then for each irreducible representation \(\pi \) of \(G \), we have \(\chi_\pi(g) = \chi_\pi(g^{-1}) = \overline{\chi_\pi(g)} \), and thus \(\chi_\pi(g) \) is real. Conversely, if \(\chi_\pi(g) \) is real for all \(g \in G \), then \(\chi_\pi(g) = \overline{\chi_\pi(g)} \) for every irreducible representation \(\pi \) of \(G \). Since the irreducible representations separate conjugacy classes (by the Schur orthogonality relations), it follows that \(g \) is conjugate to \(g^{-1} \) for all \(g \in G \).

(c) Each element of \(S_n \) has a unique representation as a product of disjoint cycles. (The uniqueness is up to the order of the factors, since they commute with one another.) Say \(g \) is a product of disjoint cycles of orders \(n_1, n_2, \ldots \), i.e.,

\[
g = (i_1 i_2 \ldots i_{n_1})(j_1 j_2 \ldots j_{n_2}) \ldots
\]

Then

\[
(i_1 i_{n_1})(i_2 i_{n_1-1}) \ldots (j_1 j_{n_2}) (j_2 j_{n_2-1}) \ldots
\]

is an element of order 2 conjugating \(g \) to \(g^{-1} \). By (b), it follows that all characters of \(S_n \) are real-valued.

3