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1. Let G be a group of order 165 = 11 · 5 · 3.
(a) Show that G has a normal subgroup N of order 11.
(b) Show that with N as in (a), G/N is abelian, and thus that G is solvable.
(c) Classify all groups of order 165 up to isomorphism.

Solution. (a) By the Sylow theorems, G has a subgroup N of order 11, and the number of conjugates of
this subgroup divides 15 and is congruent to 1 mod 11. Hence N is normal, and G/N is a group of order
15. (b) Then G/N contains a Sylow 5-subgroup of order 5, and the number of conjugates of this subgroup
divides 3 and is congruent to 1 mod 5. So the Sylow 5-subgroup of N is normal, and also central since 3
does not divide 5 − 1. So G/N is abelian, and is necessarily isomorphic to (Z/5) × (Z/3) (since the Sylow
subgroups are both cyclic and central). Since G is an extension of an abelian group by an abelian group, it
is solvable. (c) Furthermore, the extension

1→ N → G→ G/N → 1

splits. To see this, first note that a Sylow 3-subgroup of G/N lifts to a Sylow 3-subgroup of G commuting
with N , since 3 does not divide 11 − 1. So G has an abelian normal subgroup H of order 33, the inverse
image in G of the Sylow 3-subgroup of G/N . Then G/H ∼= Z/5 and a Sylow 5-subgroup of G gives a
semidirect product decomposition of G as H o (Z/5). Furthermore, since the subgroup of order 3 in H is
characteristic and 5 does not divide 3− 1, a Sylow 5-subgroup of G centralizes the Sylow 3-subgroup of H.
Hence G splits as a product (Z/3)×(Z/11oZ/5), for some action of a cyclic 5-group on a cyclic 11-group. It
remains to understand the possible actions. Since the automorphism group of a cyclic group of prime order
p is cyclic, of order p− 1, there is (up to changes of generators) exactly one non-trivial homomorphism from
Z/5 to the automorphism group of Z/11. Hence there are exactly two possibilities for G up to isomorphism:
(Z/11)× (Z/5)× (Z/3), and (Z/11oZ/5)× (Z/3) (non-trivial semidirect product). Since 45 ≡ 1 (mod 11),
the second of these groups has generators a, b, c, with a11 = 1, b5 = 1, c3 = 1, c central, and bab−1 = a4.

2. Suppose A is a 3×3 matrix with entries in a field F of characteristic 0, and assume TrA = 6, TrA2 = 14,
and detA = 6. (Tr denotes the trace.) Prove that A is similar over F to the diagonal matrix 1 0 0

0 2 0
0 0 3

 .

Solution. Let x1, x2, x3 be the roots of the characteristic polynomial of A (in some splitting field). Then
the given data tells us that x1 + x2 + x3 = 6, that x2

1 + x2
2 + x2

3 = 14, and that x1x2x3 = 6. But

(x1 + x2 + x3)2 = x2
1 + x2

2 + x2
3 + 2(x1x2 + x1x3 + x2x3),

so x1x2 + x1x3 + x2x3 = (62 − 14)/2 = 22/2 = 11. (Note that we’ve used the assumption that F does not
have characteristic 2.) So the characteristic polynomial of A is x3 − 6x2 + 11x− 6, the same as for 1 0 0

0 2 0
0 0 3

 ,

1



and factors as (x − 1)(x − 2)(x − 3). Since this has distinct roots (again we’re using the fact that the
characteristic is 6= 2) and the roots lie in the prime field, A is diagonalizable over F and similar to the
indicated matrix.

3. You may assume the fact that the ring R = Z[ω], where ω is a primitive cube root of unity, is a PID —
in fact, a Euclidean ring with respect to the norm N defined by

N(a+ bω) = (a+ bω)(a+ bω2) = a2 − ab+ b2.

Let p ∈ Z be an ordinary prime number. Show that:
(a) An element y ∈ R is a unit in R if and only if N(y) = 1.
(b) p can be written in the form a2 − ab+ b2, a, b ∈ Z, if and only if the ideal (p) is not prime in R.
(c) The ideal (p) is not prime in R if and only if the polynomial x2 + x+ 1 is reducible in Fp[x].

Deduce that:
(d) (3) and (7) are not prime in R, but that (2) and (5) are prime in R.

Solution. (a) is a general fact about Euclidean rings: If N(y) = 1, then since also N(1) = N(12) =
N(1)N(1) and thus N(1) = 1, the division algorithm yields 1 = yz + r for some z, r ∈ R with N(r) < 1, so
r = 0 and y is a unit. The other direction is even easier: if y is a unit, then 1 = N(1) = N(y)N(y−1), so
N(y) = 1.

(b) If p is irreducible in R, then (p) is prime. Otherwise p has a nontrivial factorization p = yz with
N(y) and N(z) proper divisors of N(p). But N(p) = p2, so this implies there is some y = a+ bω ∈ R with
N(y) = a2 − ab+ b2 = p.

(c) Note that R = Z[x]/(x2 + x+ 1) (since x2 + x+ 1 is the minimal polynomial of ω over Q), so that
R/(p) = Fp[x]/(x2 + x+ 1). If x2 + x+ 1 is irreducible in Fp[x], then it generates a maximal ideal, so R/(p)
is a field, and (p) is a prime ideal in R. But if x2 + x+ 1 is reducible in Fp[x], then R/(p) is not an integral
domain, and so (p) is not a prime ideal.

(d) The polynomial f(x) = x2 + x + 1 is irreducible in Fp[x] for p = 2 or 5, since f(0) = 1, f(1) = 3,
f(2) = 7, f(3) = 13, f(4) = 21, and none of these values is divisible by 2 or 5. But f(1) ≡ 0 (mod 3) and
f(2) ≡ 0 (mod 7), so f(x) = x2 + x+ 1 is reducible in Fp[x] for p = 3 or 7. Now apply (c).

4. Let M be a finitely generated module over a PID, R, and suppose that for some distinct nonzero prime
ideals P and Q of R, (P 2Q2) ·M = 0. Prove that there are unique integers p1, p2, q1, q2 ≥ 0 such that M is
isomorphic to

(R/P )p1 ⊕ (R/P 2)p2 ⊕ (R/Q)q1 ⊕ (R/Q2)q2 .

Solution. By the structure theorem for finitely generated modules over a PID, M is a direct sum of finitely
many cyclic primary modules of the form R/Ik, k ≥ 1, with I prime. Since our M is annihilated by P 2Q2,
which is non-zero (since P and Q are non-zero), and since P and Q are relatively prime, we claim first of
all that the only I’s that can occur here are P and Q, and that the only k’s that can occur are 1 and 2.
Indeed, I = 0 is ruled out (since R/(0) = R is not annihilated by P 2Q2), as is any prime I different from
P and Q (since then P 2Q2 and Ik have no prime factors in common, hence are relatively prime, hence
P 2Q2 + Ik = R and (P 2Q2) · (R/Ik) = R · (R/Ik) = R/Ik 6= 0. Furthermore, any k > 1 is ruled out, since
(P 2Q2) · (R/P k) = Q2 · (P 2/P k) = P 2/P k (again because Q2 + P k = R), which is non-zero if k > 2, and
similarly with P and Q interchanged. Thus

M ∼= (R/P )p1 ⊕ (R/P 2)p2 ⊕ (R/Q)q1 ⊕ (R/Q2)q2

for some p1, p2, q1, q2 ≥ 0. To show these are unique, observe that (PQ2) ·M ∼= (P/P 2)p2 , a vector space of
dimension p2 over R/P , and similarly (P 2Q) ·M is a vector space of dimension q2 over R/Q. That shows
(by invariance of dimension for a vector space) that p2 and q2 are uniquely determined, while we can recover
p1 + p2 and q1 + q2 as the minimal number of generators of Q2 ·M and P 2 ·M , respectively.

5. (a) Prove that for every element g of G = Sn, g is conjugate in G to g−1.
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(b) Show that there is an element of A4 which is not conjugate to its inverse.

Solution. (a) Each element of Sn has a unique representation as a product of disjoint cycles. (The uniqueness
is up to the order of the factors, since they commute with one another.) Say g is a product of disjoint cycles
of orders n1, n2, . . . , i.e.,

g = (i1i2 . . . in1)(j1j2 . . . jn2) . . . .

Then
(i1in1)(i2in1−1) . . . (j1jn2)(j2jn2−1) . . .

is an element of order 2 conjugating g to g−1.
(b) The group A4 has a normal subgroup V4 = {1, (12)(34), (13)(24), (14)(23)} and A4/V4 is cyclic of

order 3. A 3-cycle in A4, say (123), projects to a generator of A4/V4. Since A4/V4 is abelian, any conjugate
of (123) projects to the same generator of A4/V4. Hence (123) is not conjugate in A4 to its inverse (132).

6. Show that if M is an n× n matrix over C and if M2(M + 1)2 = 0, then M is similar to a direct sum of
blocks of the forms

(0),
(

0 1
0 0

)
, (−1),

(
−1 1
0 −1

)
.

Solution. Apply the argument of #4 with R = C[x], P = (x), Q = (x + 1), or else use Jordan canonical
form.
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