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1. (Ph.D. and M.A.)

(a) By the Baire Category Theorem, one of the one-point sets {z;} has a non-empty
interior. Such a set is an isolated point.

(b) Say it is z1 which is isolated. By the same argument X — {z;} has an isolated
point zy. x5 is also isolated in X. Continuing, we see that X has infinitely many
isolated points.

(c) It is true that X — .J has isolated points, i.e., points which are isolated in X — .J.
These need not and won’t be isolated in X.

2. (Ph.D. and M.A.) If |A\| < 2 and |z| = 1, then
|2* + A < 3 =3z|.

Thus, by Rouché’s Theorem, 2* — 3z + A = —(32z — (2* + \)) has the same number of zeros
(counting multiplicities) as does 3z inside the circle |z| = 1, and thus z* — 32 + A\ = 0 has
a unique solution z(\) with |z(\)] < 1.

Furthermore, z()) is holomorphic in A since it has a complex derivative which can be
computed by implicit differentiation:

d dz

z
42 = 3" 41 =
or
dz 1

dx ~ 3—4z(\)%
Alternatively, if f(() is holomorphic and has a unique simple zero in {|¢| < 1} and no

zeros on {[¢| = 1}, then Cf'(¢)
d
B, S

gives the value of the zero of f, so applying this we get the integral formula

L -3
N M s

from which it follows that z(\) is holomorphic by differentiation under the integral sign.

To find the first few Taylor series coefficients a,, observe that z(A) = 0 when A = 0.
Thus ap = 0 and z(\)* has a Taylor series beginning with the term (a1 \)* = afA\*. So
substituting in the equation gives

at A + O(N°) = 3 (a1 A + ax N 4+ azA® + agA* + O(N°)) + A =0,
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so that —3a; +1 =0, a; = 0, a3 = 0, and a] — 3a4 = 0. Thus a; = %, as = 375, and

G0:G2:G3:0.

3. (Ph.D. and M.A.) Denoting the integrand by f,(z) we have

Fala) < 2

n—2

> 0.
1_|_$n’ r =z

For0 <z <1andn > 2,

< <1, while for = > 1
142 1+ zm

2 1

1+2zm — 22
Thus fn(z) is dominated for each n > 2 by the integrable function min(1,-%). By the
Dominated Convergence Theorem,

lim/ fn:/ lim f,, = 0.
0 0

4. (Ph.D.) Let I'r be the contour obtained by traveling from —R to —% along the
negative real axis, then traveling clockwise along a semicircular arc of radius % to the point
—I—%, then traveling to R along the positive real axis, then traveling counterclockwise along
a semicircular arc of radius R back to —R. If log z denotes the branch of the logarithm
defined in the complement of the negative imaginary axis and agreeing with the principal
branch along the positive real axis, then log z i1s holomorphic in a neighborhood of the
closed region bounded by I'g. So by the Residue Theorem,

1 2 1 2

% U0B2)" 1. — oriRes,,; 182
rp 2244 22 44
(log2 + m%)?

= 2m1

4y

_7712_|_i2
=3 og 772.
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On the other hand, fﬁl“R (lzoi_zi dz is the sum of the integrals along the semicircular
arcs and the integrals along the line segments. The integrals along the semicircular arcs
tend to 0 as R — oc: in the case of the small arc, because the arc length is %, and thus the

(log R)?
p o

— 0, and in the case of the big arc, because

the integrand is bounded by a multiple of (10%5)2, while the arc length is 7R, so that the

integral is bounded by a multiple o

product of the two is bounded by a multiple of @ — 0. The integrals along the line
segments give

2 oo 2 0 : . 2
% (1Og Z) dz R_>OO> / (10gl’) dx _I_/ (TFZ —|—10g( $)) dr
T 0

n 22 44 2 +4 e 2 +4
_ /Oo Qog2)” /Oo (ri tlogo)’ 4,
o x2+4 o 2 +4

ol
= /0 %dm + (a real-valued integral).



Taking imaginary parts, we obtain

| 1 | 2
/ Zng d:l::—Im% (log 2) dz
o x2+4 2r I'r 22 44

_1I T I 2—|-le
T oy My \08e Ty

_ ! log 2
—47Tog.

5. (Ph.D.) Define L : C(X) — R by

L(f) = Jim [ dun,

which limit is assumed to exist. Then L is linear since each f — [ fdpu, is linear, and
positive (i.e., L(f) > 0if f > 0) since [ fdu, > 01if f > 0. Now { [ fdu,} is bounded for
each f, so by the uniform boundedness principle, L is bounded. (Alternatively, positivity
implies boundedness since if M = sup |f(z)|, M — f > 0 and thus L(M) — L(f) > 0, i.e.,
L(f) < M- L(1), and similarly with —L(f), so that |L(f)| < M - L(1).) But by the Riesz
representation theorem, every bounded linear functional on C(X) is given by integration
against a (finite) signed Baire measure. So L(f) = [ fdu for some finite signed Baire
measure . Since L is positive, the negative part of its Jordan decomposition must vanish,
and g is a positive measure.

6. (Ph.D.) The function sin z — 2z is odd and entire, hence can be written in the form
3 = 2¢g(2?), where g is entire. Suppose sinz — z* has only finitely many zeros.
Then ¢(¢) has only finitely many zeros, and so we may write ¢({) = p({)h(¢), where p
is a polynomial and h is entire without zeros. Now since sin z is a linear combination of

¢ and €'*, |sinz| < const - e/*l. Thus |sinz — 2%| < Cel*! for some constant C' > 0, and

19(0)] € CreVIEl for some €y > 0, and |h(¢)| < CyeVI¢l for some Cy > 0. Since h is entire
of finite order without zeros, it is the exponential of a polynomial, and since the order is
< %, this polynomial is a constant. That implies ¢ is a polynomial, and hence sinz — 23 is

a polynomial, a contradiction.

sinz — 2

7. (Ph.D.) Let Y207 cne'™ be the (formal) Fourier series expansion of f(e'?), given
by

_ 1 /27" f( iO) —inede
c"_gﬂ- ; e'e )

Since f is C?, integrating by parts twice in the integral gives the estimate
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for some constant C' > 0 (depending on the sup norms of f, f', and f). Since

C
Zn—2<oo,

n#0

the Fourier series for f converges uniformly to a continuous function (by the Weierstrass
M-test). Since on the other hand it converges to f in L? (this is true for any function in
L?(T)), the series must converge uniformly to f. Let

f+(2) = Z cnz”, f=(2) = Zc_nz_".
n=0 n=1

Then, again by the Weierstrass M-test, these series converge uniformly to continuous
functions on D and C . D, respectively. Since these are power series in z and z7!,
respectively, each with radius of convergence at least 1, f4 and f_ are holomorphic in D
and C ~. D, respectively. By construction, f = fy + f_ on T.

Clearly, we are free to add an arbitrary constant to f; and to subtract the same
constant from f_, but this is the extent of the non-uniqueness. Indeed, if g and g_ have
the same properties as fy and f_ with respect to f, then g4 — f+ and g— — f_ have the
same properties with respect to the zero-function. But g4+ — f4, being holomorphic in D,
has no non-zero Fourier coefficients with negative index, and g_ — f_, being holomorphic
in C~. D, has no non-zero Fourier coefficients with positive index. Thus g4 — f4 = f_ —¢g_
1s a constant.

8. (Ph.D.) (a) Let 2z, € Q and consider a closed ball B,(zy) centered at zy and
contained in §. (Such a ball exists since € is open.) By the Mean Value Property,

o)== [ st

for any holomorphic function ¢ in €2, and thus

for any g € B(€). Thus

ulao) = o)l = | (Foteo) = o). x|

1
2 XBr(z0)

1 ‘ 1
= Ifu(z0) = funlz0)llz2 - 5 Vrr? = == fulz0) = fnlz0)ll 2

< | fn(2z0) = fm(20)]l 12 (Cauchy-Schwarz)
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Since {fn} is a Cauchy sequence in L?, this shows that the sequence {f,} is uniformly
Cauchy on any compact set K C  (take r to be less than the distance from K to the
boundary of ). Hence {f,} converges uniformly on compacta to an analytic function.
Since also f,, — f in L?, the limits are the same and (after perhaps changing f on a null
set) f is analytic, so f € B(€Q). Thus B() is closed.

(b) The proof of (a) showed that for f € B(2), 20 € Q, and B,(2) C £,

flzo) = <f, %XB,,(ZO)>

L2(Q, dm)

Let P be the orthogonal projection from L?(Q, dm) onto the closed subspace B({2), and

let
1

k‘(_, Zo) = P <mXBr(ZO)> € B(Q)

Then

(since P = P*)

I
N
v
T
N
i
3| =
no
>~
=
5
N
~_—

1
= <f7 (W—QXBT(Zo))> (since f € range P)

4. (M.A.) There are several ways to do this, including contour integration. The fastest
method is by change of variables u = €*, du = u dz:

/oo dz _2/°° dz
_ocoshz ~J, coshz
> 2
g €'+e’ 7’
/OO 1 du
4 ke
1 utulu

/oo du
=4
1 14+u?

= darctanu] ™ = 4(= — 1)
= arcanul— 2 4:
:4ZZ7T.
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5. (M.A.) We claim there are constants ¢ > 0 and L > 0 (independent of n) such that
|fn(z)| > ¢ for x in a measurable set E, of measure > L. Indeed, if not, then for each
e > 0, the measure of {z : |f,(z)| > ¢} tends to 0 as n — oo, which since sup, |f,(z)| <M
gives

[ fallr < Nex(e:|fu(a)<ey + MX {a:)fo (2) )2} 27
<e+ M

X{w:|fu ()| 2e} 1P = €,

a contradiction since we can take ¢ arbitrarily small.

Suppose a, /4 0. Then passing to a subsequence, we may assume |a,| > § > 0 for all
n. Since [0, 1] has finite measure, there must be a subset E of [0, 1] of positive measure
such that for € E, z lies in infinitely many of the E,. (If not, for almost all z, = lies in
only finitely many of the E,,. Since the set F of finite subsets of N is countable, almost all
of [0, 1] is partitioned into the countably many sets

Ep={zr:2€E,&neF} FeF,

whose measures have to add up to 1. So there exist Fj, ..., F; whose complement has
measure < L. This is impossible, since for n ¢ Fy, ..., F;, E, is a set of measure at
least L which does not meet Fy, ..., F;.) Then on E, Y ayfn(x) converges a. e. while
| fn(z)| > € for infinitely many n and |a,| > § for all n, a contradiction.

6. (M.A.) The linear fractional transformation

z—1
z+1

L:z—

sends 1 — 0, =1 o0, 0 — —1, and ¢ — 1. Thus L maps 2 in a one-to-one conformal way
onto the domain {re'® : r >0, T < 6 < 2r}. So

o ()

maps {2 in a one-to-one conformal way onto the upper half-plane. However,

i 1
_L1
2 2

So we need to compose with a conformal automorphism of the upper half-plane sending

this point to 7. The map
-7 (3)
2= — |2z — =
V3 2

is a conformal automorphism of the upper half-plane sending % + i? to 7. So

f:zH%(g(Z)—%>:%<_i<z;1>>§_%

has all the desired properties.

ca|=‘

g(0) =it =c




