Solutions Written Graduate Qualifying Exam Analysis (Ph.D. and M.A. Versions)

August, 1995

1. (Ph.D. and M.A.)

- (a) By the Baire Category Theorem, one of the one-point sets $\{x_j\}$ has a non-empty interior. Such a set is an isolated point.
- (b) Say it is x_1 which is isolated. By the same argument $X \{x_1\}$ has an isolated point x_2 . x_2 is also isolated in X. Continuing, we see that X has infinitely many isolated points.
- (c) It is true that X J has isolated points, i.e., points which are isolated in X J. These need not and won't be isolated in X.
- 2. (Ph.D. and M.A.) If $|\lambda| < 2$ and |z| = 1, then

$$|z^4 + \lambda| < 3 = |3z|.$$

Thus, by Rouché's Theorem, $z^4 - 3z + \lambda = -(3z - (z^4 + \lambda))$ has the same number of zeros (counting multiplicities) as does 3z inside the circle |z| = 1, and thus $z^4 - 3z + \lambda = 0$ has a unique solution $z(\lambda)$ with $|z(\lambda)| < 1$.

Furthermore, $z(\lambda)$ is holomorphic in λ since it has a complex derivative which can be computed by implicit differentiation:

$$4z^3\frac{dz}{d\lambda} - 3\frac{dz}{d\lambda} + 1 = 0,$$

or

$$\frac{dz}{d\lambda} = \frac{1}{3 - 4z(\lambda)^3}.$$

Alternatively, if $f(\zeta)$ is holomorphic and has a unique simple zero in $\{|\zeta| < 1\}$ and no zeros on $\{|\zeta| = 1\}$, then

$$\oint_{|\zeta|=1} \frac{\zeta f'(\zeta)}{f(\zeta)} d\zeta$$

gives the value of the zero of f, so applying this we get the integral formula

$$z(\lambda) = \oint_{|\zeta|=1} \frac{\zeta(4\zeta^3 - 3)}{\zeta^4 - 3\zeta + \lambda} d\zeta,$$

from which it follows that $z(\lambda)$ is holomorphic by differentiation under the integral sign.

To find the first few Taylor series coefficients a_n , observe that $z(\lambda) = 0$ when $\lambda = 0$. Thus $a_0 = 0$ and $z(\lambda)^4$ has a Taylor series beginning with the term $(a_1\lambda)^4 = a_1^4\lambda^4$. So substituting in the equation gives

$$a_1^4 \lambda^4 + O(\lambda^5) - 3(a_1 \lambda + a_2 \lambda^2 + a_3 \lambda^3 + a_4 \lambda^4 + O(\lambda^5)) + \lambda = 0,$$

so that $-3a_1 + 1 = 0$, $a_2 = 0$, $a_3 = 0$, and $a_1^4 - 3a_4 = 0$. Thus $a_1 = \frac{1}{3}$, $a_4 = 3^{-5}$, and $a_0 = a_2 = a_3 = 0$.

3. (Ph.D. and M.A.) Denoting the integrand by $f_n(x)$ we have

$$|f_n(x)| \le \frac{x^{n-2}}{1+x^n}, \qquad x \ge 0.$$

For $0 \le x \le 1$ and $n \ge 2$, $\frac{x^{n-2}}{1+x^n} \le \frac{1}{1+x^n} \le 1$, while for x > 1 $\frac{x^{n-2}}{1+x^n} \le \frac{1}{x^2}.$

Thus $f_n(x)$ is dominated for each $n \geq 2$ by the integrable function $\min(1, \frac{1}{x^2})$. By the Dominated Convergence Theorem,

$$\lim \int_0^\infty f_n = \int_0^\infty \lim f_n = 0.$$

4. (Ph.D.) Let Γ_R be the contour obtained by traveling from -R to $-\frac{1}{R}$ along the negative real axis, then traveling clockwise along a semicircular arc of radius $\frac{1}{R}$ to the point $+\frac{1}{R}$, then traveling to R along the positive real axis, then traveling counterclockwise along a semicircular arc of radius R back to -R. If $\log z$ denotes the branch of the logarithm defined in the complement of the negative imaginary axis and agreeing with the principal branch along the positive real axis, then $\log z$ is holomorphic in a neighborhood of the closed region bounded by Γ_R . So by the Residue Theorem,

$$\oint_{\Gamma_R} \frac{(\log z)^2}{z^2 + 4} dz = 2\pi i \operatorname{Res}_{z=2i} \frac{(\log z)^2}{z^2 + 4}
= 2\pi i \frac{(\log 2 + \pi \frac{i}{2})^2}{4i}
= \frac{\pi}{2} \left(\log 2 + \pi \frac{i}{2}\right)^2.$$

On the other hand, $\oint_{\Gamma_R} \frac{(\log z)^2}{z^2+4} dz$ is the sum of the integrals along the semicircular arcs and the integrals along the line segments. The integrals along the semicircular arcs tend to 0 as $R \to \infty$: in the case of the small arc, because the arc length is $\frac{\pi}{R}$, and thus the integral is bounded by a multiple of $\frac{(\log R)^2}{R} \to 0$, and in the case of the big arc, because the integrand is bounded by a multiple of $\frac{(\log R)^2}{R^2}$, while the arc length is πR , so that the product of the two is bounded by a multiple of $\frac{(\log R)^2}{R} \to 0$. The integrals along the line segments give

$$\oint_{\Gamma_R} \frac{(\log z)^2}{z^2 + 4} dz \xrightarrow{R \to \infty} \int_0^\infty \frac{(\log x)^2}{x^2 + 4} dx + \int_{-\infty}^0 \frac{(\pi i + \log(-x))^2}{x^2 + 4} dx
= \int_0^\infty \frac{(\log x)^2}{x^2 + 4} dx + \int_0^\infty \frac{(\pi i + \log x)^2}{x^2 + 4} dx
= \int_0^\infty \frac{2\pi i \log x}{x^2 + 4} dx + (\text{a real-valued integral}).$$

Taking imaginary parts, we obtain

$$\int_0^\infty \frac{\log x}{x^2 + 4} dx = \frac{1}{2\pi} \text{Im} \oint_{\Gamma_R} \frac{(\log z)^2}{z^2 + 4} dz$$
$$= \frac{1}{2\pi} \text{Im} \frac{\pi}{2} \left(\log 2 + \pi \frac{i}{2} \right)^2$$
$$= \frac{1}{4} \pi \log 2.$$

5. (Ph.D.) Define $L:C(X)\to\mathbb{R}$ by

$$L(f) = \lim_{n \to \infty} \int f \, d\mu_n,$$

which limit is assumed to exist. Then L is linear since each $f \mapsto \int f \, d\mu_n$ is linear, and positive (i.e., $L(f) \geq 0$ if $f \geq 0$) since $\int f \, d\mu_n \geq 0$ if $f \geq 0$. Now $\{\int f \, d\mu_n\}$ is bounded for each f, so by the uniform boundedness principle, L is bounded. (Alternatively, positivity implies boundedness since if $M = \sup |f(x)|$, $M - f \geq 0$ and thus $L(M) - L(f) \geq 0$, i.e., $L(f) \leq M \cdot L(1)$, and similarly with -L(f), so that $|L(f)| \leq M \cdot L(1)$.) But by the Riesz representation theorem, every bounded linear functional on C(X) is given by integration against a (finite) signed Baire measure. So $L(f) = \int f \, d\mu$ for some finite signed Baire measure μ . Since L is positive, the negative part of its Jordan decomposition must vanish, and μ is a positive measure.

6. (Ph.D.) The function $\sin z - z^3$ is odd and entire, hence can be written in the form $\sin z - z^3 = zg(z^2)$, where g is entire. Suppose $\sin z - z^3$ has only finitely many zeros. Then $g(\zeta)$ has only finitely many zeros, and so we may write $g(\zeta) = p(\zeta)h(\zeta)$, where p is a polynomial and h is entire without zeros. Now since $\sin z$ is a linear combination of e^{iz} and e^{iz} , $|\sin z| \leq \text{const} \cdot e^{|z|}$. Thus $|\sin z - z^3| \leq Ce^{|z|}$ for some constant C > 0, and $|g(\zeta)| \leq C_1 e^{\sqrt{|\zeta|}}$ for some $C_1 > 0$, and $|h(\zeta)| \leq C_2 e^{\sqrt{|\zeta|}}$ for some $C_2 > 0$. Since h is entire of finite order without zeros, it is the exponential of a polynomial, and since the order is $\leq \frac{1}{2}$, this polynomial is a constant. That implies g is a polynomial, and hence $\sin z - z^3$ is a polynomial, a contradiction.

7. (Ph.D.) Let $\sum_{n=-\infty}^{\infty} c_n e^{in\theta}$ be the (formal) Fourier series expansion of $f(e^{i\theta})$, given by

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) e^{-in\theta} d\theta.$$

Since f is C^2 , integrating by parts twice in the integral gives the estimate

$$|c_n| \le \frac{C}{n^2} \qquad (n \ne 0),$$

for some constant C > 0 (depending on the sup norms of f, f', and f''). Since

$$\sum_{n \neq 0} \frac{C}{n^2} < \infty,$$

the Fourier series for f converges uniformly to a continuous function (by the Weierstrass M-test). Since on the other hand it converges to f in L^2 (this is true for any function in $L^2(\mathbb{T})$), the series must converge uniformly to f. Let

$$f_{+}(z) = \sum_{n=0}^{\infty} c_n z^n, \qquad f_{-}(z) = \sum_{n=1}^{\infty} c_{-n} z^{-n}.$$

Then, again by the Weierstrass M-test, these series converge uniformly to continuous functions on \overline{D} and $\mathbb{C} \setminus D$, respectively. Since these are power series in z and z^{-1} , respectively, each with radius of convergence at least 1, f_+ and f_- are holomorphic in D and $\mathbb{C} \setminus \overline{D}$, respectively. By construction, $f = f_+ + f_-$ on \mathbb{T} .

Clearly, we are free to add an arbitrary constant to f_+ and to subtract the same constant from f_- , but this is the extent of the non-uniqueness. Indeed, if g_+ and g_- have the same properties as f_+ and f_- with respect to f, then $g_+ - f_+$ and $g_- - f_-$ have the same properties with respect to the zero-function. But $g_+ - f_+$, being holomorphic in D, has no non-zero Fourier coefficients with negative index, and $g_- - f_-$, being holomorphic in $\mathbb{C} \setminus \overline{D}$, has no non-zero Fourier coefficients with positive index. Thus $g_+ - f_+ = f_- - g_-$ is a constant.

8. (Ph.D.) (a) Let $z_0 \in \Omega$ and consider a closed ball $\overline{B}_r(z_0)$ centered at z_0 and contained in Ω . (Such a ball exists since Ω is open.) By the Mean Value Property,

$$g(z_0) = \frac{1}{\pi r^2} \iint_{B_r(z_0)} g(z) \, dm(z)$$

for any holomorphic function g in Ω , and thus

$$g(z_0) = \left\langle g, \frac{1}{\pi r^2} \chi_{B_r(z_0)} \right\rangle_{L^2(\Omega, dm)}$$

for any $g \in B(\Omega)$. Thus

$$|f_{n}(z_{0}) - f_{m}(z_{0})| = \left| \left\langle f_{n}(z_{0}) - f_{m}(z_{0}), \frac{1}{\pi r^{2}} \chi_{B_{r}(z_{0})} \right\rangle \right|$$

$$\leq \|f_{n}(z_{0}) - f_{m}(z_{0})\|_{L^{2}} \left\| \frac{1}{\pi r^{2}} \chi_{B_{r}(z_{0})} \right\|_{L^{2}} \quad \text{(Cauchy-Schwarz)}$$

$$= \|f_{n}(z_{0}) - f_{m}(z_{0})\|_{L^{2}} \cdot \frac{1}{\pi r^{2}} \sqrt{\pi r^{2}} = \frac{1}{r\sqrt{\pi}} \|f_{n}(z_{0}) - f_{m}(z_{0})\|_{L^{2}}.$$

Since $\{f_n\}$ is a Cauchy sequence in L^2 , this shows that the sequence $\{f_n\}$ is uniformly Cauchy on any compact set $K \subset \Omega$ (take r to be less than the distance from K to the boundary of Ω). Hence $\{f_n\}$ converges uniformly on compact to an analytic function. Since also $f_n \to f$ in L^2 , the limits are the same and (after perhaps changing f on a null set) f is analytic, so $f \in B(\Omega)$. Thus $B(\Omega)$ is closed.

(b) The proof of (a) showed that for $f \in B(\Omega), z_0 \in \Omega$, and $\overline{B}_r(z_0) \subset \Omega$,

$$f(z_0) = \left\langle f, \frac{1}{\pi r^2} \chi_{B_r(z_0)} \right\rangle_{L^2(\Omega, dm)}.$$

Let P be the orthogonal projection from $L^2(\Omega, dm)$ onto the closed subspace $B(\Omega)$, and let

$$k(\underline{}, z_0) = P\left(\frac{1}{\pi r^2} \chi_{B_r(z_0)}\right) \in B(\Omega).$$

Then

$$\langle f, k(\underline{\hspace{0.3cm}}, z_0) \rangle = \left\langle f, P\left(\frac{1}{\pi r^2} \chi_{B_r(z_0)}\right) \right\rangle$$

$$= \left\langle Pf, \left(\frac{1}{\pi r^2} \chi_{B_r(z_0)}\right) \right\rangle \quad \text{(since } P = P^*)$$

$$= \left\langle f, \left(\frac{1}{\pi r^2} \chi_{B_r(z_0)}\right) \right\rangle \quad \text{(since } f \in \text{range } P)$$

$$= f(z_0).$$

4. (M.A.) There are several ways to do this, including contour integration. The fastest method is by change of variables $u = e^x$, du = u dx:

$$\int_{-\infty}^{\infty} \frac{dx}{\cosh x} = 2 \int_{0}^{\infty} \frac{dx}{\cosh x}$$

$$= 2 \int_{0}^{\infty} \frac{2}{e^{x} + e^{-x}} dx$$

$$= 4 \int_{1}^{\infty} \frac{1}{u + u^{-1}} \frac{du}{u}$$

$$= 4 \int_{1}^{\infty} \frac{du}{1 + u^{2}}$$

$$= 4 \arctan u \Big|_{1}^{\infty} = 4(\frac{\pi}{2} - \frac{\pi}{4})$$

$$= 4\frac{\pi}{4} = \pi.$$

5. (M.A.) We claim there are constants $\varepsilon > 0$ and L > 0 (independent of n) such that $|f_n(x)| \ge \varepsilon$ for x in a measurable set E_n of measure $\ge L$. Indeed, if not, then for each $\varepsilon > 0$, the measure of $\{x : |f_n(x)| \ge \varepsilon\}$ tends to 0 as $n \to \infty$, which since $\sup_x |f_n(x)| \le M$ gives

$$||f_n||_{L^p} \le ||\varepsilon\chi_{\{x:|f_n(x)|\le\varepsilon\}} + M\chi_{\{x:|f_n(x)|\ge\varepsilon\}}||_{L^p}$$

$$\le \varepsilon + M||\chi_{\{x:|f_n(x)|>\varepsilon\}}||_{L^p} \to \varepsilon,$$

a contradiction since we can take ε arbitrarily small.

Suppose $a_n \not\to 0$. Then passing to a subsequence, we may assume $|a_n| > \delta > 0$ for all n. Since [0, 1] has finite measure, there must be a subset E of [0, 1] of positive measure such that for $x \in E$, x lies in infinitely many of the E_n . (If not, for almost all x, x lies in only finitely many of the E_n . Since the set \mathcal{F} of finite subsets of \mathbb{N} is countable, almost all of [0, 1] is partitioned into the countably many sets

$$E_F = \{x : x \in E_n \Leftrightarrow n \in F\}, \qquad F \in \mathcal{F},$$

whose measures have to add up to 1. So there exist F_1, \ldots, F_j whose complement has measure $\langle L \rangle$. This is impossible, since for $n \notin F_1, \ldots, F_j$, E_n is a set of measure at least L which does not meet F_1, \ldots, F_j .) Then on $E, \sum_n a_n f_n(x)$ converges a. e. while $|f_n(x)| \geq \varepsilon$ for infinitely many n and $|a_n| > \delta$ for all n, a contradiction.

6. (M.A.) The linear fractional transformation

$$L: z \mapsto \frac{z-1}{z+1}$$

sends $1 \mapsto 0$, $-1 \mapsto \infty$, $0 \mapsto -1$, and $i \mapsto i$. Thus L maps Ω in a one-to-one conformal way onto the domain $\{re^{i\theta}: r > 0, \frac{\pi}{2} < \theta < 2\pi\}$. So

$$g: z \mapsto \left(-i\left(\frac{z-1}{z+1}\right)\right)^{\frac{2}{3}}$$

maps Ω in a one-to-one conformal way onto the upper half-plane. However,

$$g(0) = i^{\frac{2}{3}} = e^{\frac{\pi i}{3}} = \frac{1}{2} + i \frac{\sqrt{3}}{2}.$$

So we need to compose with a conformal automorphism of the upper half-plane sending this point to i. The map

$$z \mapsto \frac{2}{\sqrt{3}} \left(z - \frac{1}{2} \right)$$

is a conformal automorphism of the upper half-plane sending $\frac{1}{2} + i \frac{\sqrt{3}}{2}$ to i. So

$$f: z \mapsto \frac{2}{\sqrt{3}} \left(g(z) - \frac{1}{2} \right) = \frac{2}{\sqrt{3}} \left(-i \left(\frac{z-1}{z+1} \right) \right)^{\frac{2}{3}} - \frac{1}{\sqrt{3}}$$

has all the desired properties.