UMCP Department of Mathematics Qualifying Exam Partial Differential Equations, August 2011

- (1) Solve all six problems. Each main problem will be assigned a grade from zero to ten-
- (2) Begin your answer to each question on a separate sheet.
- (3) Write your code number on each page of your answer sheets Do not use your name
- (4) Keep any scratch work on separate sheets, which should not be submitted
- (5) Carefully explain all your steps. If you invoke a "well-known" theorem, you must make clear which theorem you are using and justify its use.
- 1. Consider a bounded domain $U \subset \mathbb{R}^n$ with C^1 boundary ∂U
 - (i) Prove that the inequality

$$\int_{U} u^{2} dx \leq \frac{1}{\lambda_{1}} \int_{U} |\nabla u|^{2} dx,$$

holds for every $u \in H^1_0(U)$. Here, λ_1 is the smallest eigenvalue of $-\Delta$ with zero boundary conditions, namely, the smallest λ with non-trivial ϕ such that $-\Delta \phi = \lambda \phi$ in U and $\phi_{|\partial U} = 0$.

- (ii) Show that there exists a non-trivial solution u for the equality $\int_U u^2 dx = \frac{1}{\lambda_1} \int_U |\nabla u|^2 dx$
- 2. Let U be a bounded open domain in \mathbb{R}^n with smooth boundary ∂U , and consider the problem

$$\begin{cases}
-\Delta u + cu = 0, & x \in U, \\
\frac{\partial u}{\partial \nu} = g, & x \in \partial U.
\end{cases}$$
(1)

Here, c is a positive constant c > 0; ν denotes the normal to ∂U and $g \in L^2(\partial U)$.

- (i) Find a weak formulation of problem (1), and prove that a weak solution exists
- (ii) Is the weak solution of part (i) unique?
- (iii) Assume that c=0 in (1) Does a weak solution of problem (1) exist for all g's? if "yes", justify your answer. If "no", provide a necessary condition for existence
- 3. Let Ω be a bounded open set of \mathbb{R}^n with smooth boundary $\partial \Omega$ and let $f: \mathbb{R} \to \mathbb{R}$ be a C^1 function such that $|f'| \leq K$ and f(0) = 0. Assume that u is a C^2 solution of

$$\begin{cases} \partial_t u - \Delta u = f(u) & \text{in } \Omega \times (0, \infty) ,\\ u(x, t) = 0 & \text{on } \partial\Omega \times (0, \infty) \end{cases}$$
 (2)

- (i) Show that if $u(x,0) \ge 0$ for all $x \in \Omega$ then $u(x,t) \ge 0$ for all $x \in \Omega$ and all t > 0.
- (ii) Show that if $u(x,0) \leq M$ for all $x \in \Omega$ then $u(x,t) \leq Me^{Kt}$ for all $x \in \Omega$ and all t > 0.
- 4. Let I be a bounded interval in $\mathbb R$. Show that there exists a constant C such that

$$||uv||_{H^1(I)} \leq C||u||_{H^1(I)}||v||_{H^1(I)}$$

for all functions u and v in $H^1(I)$

5. Consider the initial value problem

$$u_t + uu_x + u = 0, \qquad -\infty < x < \infty, \ t > 0 \tag{3}$$

subject to initial condition $u(x,0) = a \sin x$

- (i) Find the characteristic curves associated with (3) in an explicit form.
- (ii) Show that if a > 1, then there exists a time $t = t_c > 0$ such that there exists no smooth solution of (3) for $t > t_c$. Find this maximal time of smoothness, t_c
- 6. Let θ be a given constant, $0 < \theta < 1$. Suppose that w solves the nonlinear wave equation

$$w_{tt} - w_{xx} = \theta \frac{w}{1 + w^2}, \quad x \in [0, \pi], \quad t > 0,$$

subject to the boundary conditions $w(x=0,t)=w(x=\pi,t)=0$, and smooth initial data $w(x,0)=w_0(x),\,w_t(x,0)=w_1(x)$

- (i) Derive an energy integral, E(t), in terms of w, w_t and w_x , which is constant in time Hint: Multiply by w_t
- (ii) Conclude that there exists a constant C_0 (depending on w_0) such that

$$\max_{0 \le x \le \pi} |w(x,t)| \le C_0 \quad \text{ for all } t > 0.$$

Hint: You may use the following three facts. (1) The bound $\ln(1+a^2) \le a^2$; (2) Sobolev inequality; and (3) the following Poincaré inequality: $\int_0^{\pi} w^2(x) dx \le \int_0^{\pi} w_x^2(x) dx$, which holds for all $w(x) \in C^1([0,\pi])$ such that $w(0) = w(\pi) = 0$