DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August 2011 LOGIC (PhD/MA version)

1. (a) Let L be the language whose only non-logical symbol is the binary relation symbol E. Let K be the class of all L-structures $\mathfrak A$ such that $E^{\mathfrak A}$ is an equivalence relation with at least one finite equivalence class. Prove that there is no L-theory T such that K = Mod(T).

Hint: Assuming that $K \subseteq Mod(T)$ show that T has a model which is not in K.

- (b) Let L be a language containing at least the binary relation symbol E. Let T be a theory of L such that E defines an equivalence relation in each model of T. Assume that T has some model which has arbitrarily large finite E-classes but no infinite E-class. Prove that T has a model with infinitely many infinite E-classes.
- 2. (a) Let T be a complete theory in a countable language L Assume there is a type $\Phi(x)$ consistent with T such that any two countable models of T realizing Φ are isomorphic. Prove that T has a countable ω -saturated model.
 - (b) Let \mathfrak{A}_0 , \mathfrak{B} , and \mathfrak{A}_1 be *L*-structures. Assume that $\mathfrak{A}_0 \prec \mathfrak{A}_1$ and $\mathfrak{A}_0 \subseteq \mathfrak{B} \subseteq \mathfrak{A}_1$. Prove that if $\mathfrak{A}_0 \models \sigma$ then $\mathfrak{B} \models \sigma$ for every *L*-sentence σ of the form

$$\exists x_1 \ldots \exists x_n \forall y_1 \ldots \forall y_m \alpha(x_1, \ldots x_n, y_1 \ldots y_m),$$

where α is an open L-formula

- 3. (a) Let T be a complete theory in a countable language L, and assume that T has a prime model $\mathfrak A$. Assume that no (countable) proper elementary extension of $\mathfrak A$ is also prime. Prove that no uncountable model of T is atomic.
 - (b) Let T be a complete theory in a language L, and let $\Phi(x)$ be an L-type. Assume that Φ is realized by at most two elements in every model of

T and by exactly two elements in some model of T. Prove that Φ is realized by exactly two elements in every model of T.

- 4. (a) Prove that there is some $H: \omega \to \omega$ such that for every recursive $f: \omega \to \omega$ there is some $n_f \in \omega$ such that f(k) < H(k) for all $k > n_f$.
 - (b) Let $A \subseteq \omega$ be an infinite r e set Prove that there are *disjoint* infinite r e. sets A_0 and A_1 with $A = A_0 \cup A_1$.
- 5. (a) Let L be the language whose only non-logical symbol is the binary relation symbol E. Prove that there is an undecidable theory T of L such that $E^{\mathfrak{A}}$ is an equivalence relation in every $\mathfrak{A} \models T$.
 - (b) Prove that there is some $e \in \omega$ such that $\{e\}(e+1) = \{e+2\}(e)$.

Note: You may not use the special properties of any particular enumeration of the partial recursive functions.

- 6. (a) Let $f, g: \omega \to \omega$ be total recursive functions. Let $I_f = \{e: \{e\} = f\}$ and let $I_g = \{e: \{e\} = g\}$. Prove that $I_f \equiv_m I_g$.
 - (b) Let $f: \omega \to \omega$ be a total recursive function and let $I_f = \{e: \{e\} = f\}$ Prove that $I_f \leq_T \mathbf{0}''$.