TOPOLOGY QUALIFYING EXAM

AUGUST, 2001

- (1) (Math 730)Compute the fundamental group of the open subset Ω of \mathbb{R}^3 obtained by removing the three coordinate axes.
- (2) (Math 730)We suppose that all topological groups are semilocally path-connected so that the theory of covering spaces applies.
 - (a) Show that a discrete normal subgroup N of a connected topological group G lies in the center of G.
 - (b) Let G, H be connected *n*-dimensional topological groups and $f : G \longrightarrow H$ a homomorphism which is a covering space. Show that the kernel of f is abelian.
 - (c) Show that the fundamental group of a connected topological group must be abelian.
- (3) (Math 730)
 - (a) Let X, Y be topological spaces. Suppose that X is compact and Y is Hausdorff. Let $f : X \longrightarrow Y$ be continuous and bijective. Prove that f is a homeomorphism.
 - (b) Find a counterexample when X is only assumed to be locally compact.

TOPOLOGY EXAM

(4) (Math 734)

Let $f: X \to \mathbb{CP}^n$ be a continuous map from a CW complex X to complex projective *n*-space. Suppose that the map $f_*: H_{2n}(X; \mathbb{Z}) \to H_{2n}(\mathbb{CP}^n; \mathbb{Z})$ is nonzero.

- (a) If β is the generator of $H^{2n}(\mathbb{CP}^n;\mathbb{Z})$, show that $f^*(\beta) \neq 0$.
- (b) Show that $H^2(X; \mathbb{Z})$ and $H_2(X; \mathbb{Z})$ are both nontrivial groups. (Hint: for the last part tensor with \mathbb{Q} to obtain that $f^*\beta$ is not torsion.)
- (5) (Math 734)

Let X be the topological space obtained by taking a solid regular hexagon and identifying the opposite edges by parallel translation.

Calculate the integral homology of X.

(6) (Math 734)

Recall that the connected sum M # N of two oriented *n*manifolds is obtained by removing an open *n*-disk from each and identifying the boundaries of the disks by an orientationpreserving homeomorphism.

- (a) Express the Euler characteristic $\chi(M \# N)$ in terms of $\chi(M)$ and $\chi(N)$.
- (b) Suppose that n > 2. Express the fundamental group $\pi_1(M \# N)$ in terms of $\pi_1(M)$ and $\pi_1(N)$.

 $\mathbf{2}$