
TOPOLOGY/GEOMETRY QUALIFYING
EXAMINATION

AUGUST 8, 2008
SOLUTIONS

Unless otherwise stated, you may appeal to a “well known theorem” in your solution to
a problem, but if you do, it is your responsibility to make it clear which theorem you are
using and why its use is justified. In problems with multiple parts, be sure to go on to the
rest of the problem even if there is some part you cannot do. In working on any part, you
may assume the answer to any previous part, even if you have not proved it.

Problem 1.

Let (M, d) be a metric space.

(a) Show that the topology on M induced by the metric is Hausdorff.
Solution. Let x 6= y in M . If ε = d(x, y)/2, then the open ε-balls Bε(x) and Bε(y)
around x and y do not intersect. �

(b) Show that d : M × M −→ R is continuous with respect to the product topology on
M × M .
Solution. It suffices to show that if a < b in R, then d−1(a, b) is open in M × M .
Let (x, y) ∈ d−1(a, b), so that a < d(x, y) < b. Let ε = 1

2
min(b − d(x, y), d(x, y)− a).

If (x′, y′) ∈ Bε(x) × Bε(y), we have by the triangle inequality

d(x′, y′) ≤ d(x, y) + d(x, x′) + d(y, y′), d(x, y) ≤ d(x′, y′) + d(x, x′) + d(y, y′),

so that |d(x, y)− d(x′, y′)| ≤ d(x, x′) + d(y, y′) < 2ε, so a < d(x′, y′) < b and Bε(x) ×
Bε(y) ⊆ d−1(a, b). �

(c) Find an example for which M is a smooth manifold, but d : M × M −→ R is not

smooth.
Solution. Simply take M = R with d(x, y) = |x − y|. This is not smooth along the
diagonal in R × R. �

Problem 2.

Let X and Y , be manifolds, and let U and Z be submanifolds of Y .

(a) Assume that f : X → Y is a smooth map transversal to Z in Y , so that W = f−1(Z)
is a submanifold of X. Prove that Tx(W ) is the preimage of Tf(x)(Z) under the linear
map dfx : Tx(X) → Tf(x)(Y ).
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Solution. First of all, observe that if g : Y → V is a smooth map with regular value
v ∈ V , then the tangent space to the submanifold Z = g−1(v) at any point y ∈ Z is
the kernel of the derivative dgy : Ty(Y ) → Tv(V ). In fact, since g is constant on Z,
we have that dgy is zero on Ty(Z), so that Ty(Z) ⊂ ker(dgy). But v is a regular value,
hence dgy is surjective, which implies that

dim ker(dgy) = dim Tv(V ) − dim Ty(Y ) = dim V − dim Y = dim Z.

Now let x ∈ W = f−1(Z) be such that f(x) = y and let k = codimY (Z). Then in a
neighborhood of x we can write W = (g ◦f)−1(0), where 0 is a regular value of a map
g defined on a neighborhood of y and with values in Rk. Because f is transversal to
Z we have that 0 is a regular value of (g ◦ f) and, by the above observation,

Tx(W ) = ker d(g ◦ f)x = ker(dgy ◦ dfx) = (dfx)
−1(ker dgy) = (dfx)

−1(Ty(Z). �

(b) Assume that U is transversal to Z. Show that for y ∈ U ∩ Z, Ty(U ∩ Z) = Ty(U) ∩
Ty(Z).
Solution. Saying that U and Z are transversal submanifolds is equivalent to saying
that the inclusion map i : U → Y is transversal to the submanifold Z ⊂ Y . Let
W = i−1(Z) = U ∩Z ⊂ U and let y ∈ U ∩Z. Then, by (i), we have that Ty(U ∩Z) =
(diy)

−1(Ty(Z)) = Ty(U) ∩ Ty(Z), since diy : Ty(U) → Ti(y)(Y ) = Ty(Y ). �

Problem 3.

(a) Compute the fundamental group of the space obtained from two tori S1 × S1 by
identifying a circle S1 × 1 in one torus with the corresponding circle S1 × 1 in the
other torus.
Solution. Let the fundamental group with basepoint (1, 1) of the first torus be
written as the group 〈a, b | ab = ba〉, and the second as 〈c, d | cd = dc〉. Let a in
the first and c in the second represent the loop S1 × 1. Then by the Van Kampen
Theorem, in the fundamental group of the identification space, a and c are identified,
so the group is 〈a, b, d | ab = ba, ad = da〉, the product of an infinite cyclic group
(with generator a) and a free group on two generators (b and d). �

(b) Let X ⊂ Rm be the union of convex open sets X1, · · · , Xn such that Xi∩Xj ∩Xk 6= ∅
for all i, j, k = 1, . . . , n. Show that X is connected and simply-connected.
Solution. We prove this by induction on n. For n = 1, 2, or 3, X is star-shaped about
any point in the intersection of all the spaces, hence is contractible, hence connected
and simply-connected. Let n ≥ 4, and assume the result is true for n − 1. Assume
that X ⊂ Rm is the union of convex open sets X1, · · · , Xn, and that Xi∩Xj ∩Xk = ∅
for all i, j, k = 1, . . . , n. Let X ′ be the union of X1, · · · , Xn−1. Then X = X ′ ∪ Xn.
Each space is connected and their intersection is non-empty, so X is connected. Also,
Xn ∩ X ′ = ∪i<n(Xn ∩ Xi) is connected, because each Xn ∩ Xi is connected and and
the intersection of any two is of the form Xi ∩ Xj ∩ Xn, which is non-empty. Now
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we can apply Van Kampen to the union of simply connected spaces with connected
intersection. Thus X is simply-connected. �

Problem 4.

Let Top be the category of pairs of topological spaces and continuous maps (as usual, we
identify a single space X with the pair (X, ∅)) and let ChCompl be the category of chain com-
plexes C• of abelian groups (with Cn = 0 for n < 0) and chain maps. Let F : Top ChCompl

be a functor and define a “homology theory” HF by HF
n (X) = Hn(F (X)), HF

n (X, A) =
Hn(F (X, A)). Assume that for each (X, A) ∈ Top, one has a natural short exact sequence

0 → F•(A) → F•(X) → F•(X, A) → 0.

Also assume that if X is contractible, then

HF
n (X) ∼=

{

Z (with a natural choice of generator), n = 0,

0, n > 0.

(a) Suppose x, y ∈ X lie the same path component of X. Show that the images of HF
0 (x)

and of HF
0 (y) in HF

0 (X) must be equal.
Solution. Let γ be a path in X from x0 to x1. This can be viewed as a map
γ : [0, 1] → X with γ(0) = x0, γ(1) = x1. Since [0, 1] is contractible, the inclusions
{0} →֒ [0, 1] and {1} →֒ [0, 1] induce isomorphisms on HF . So look at the commuting
diagram

{0}
� _

��

// {x0}� _

��
[0, 1]

γ // X

{1}
?�

OO

// {x1}
?�

OO

and the induced diagram in HF homology

HF
0 ({0})

∼=
��

∼= // HF
0 ({x0})

��

HF
0 ([0, 1])

γ∗ // HF
0 (X)

HF
0 ({1})

∼=

OO

∼= // HF
0 ({x1}).

OO

This shows that the images of HF
0 ({x0}) and HF

0 ({x1}) in HF
0 (X) are equal. �
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(b) Let Sing : Top ChCompl be the singular chain functor. Show that there is a natural
transformation Φ: Sing → F inducing an isomorphism H• → HF

• on contractible
spaces. (Hint: Naturality is key; use the method of acyclic models.)
Solution. It suffices to work with single spaces instead of pairs, since once Φ is
given on A and X, that determines it on Sing(X, A) = Sing(X)/Sing(A). Recall
that Sing0(X) is the free abelian group on the points of X. For X = pt, choose a
representative for the canonical generator of HF

0 (X) and use this to define Φ in degree
0 for a point. By naturality, this determines Φ in degree 0 for all X. Use the Acyclic
Models Theorem to extend Φ to all dimensions; this is possible since Sing is freely
represented by the model spaces ∆n and F (∆n) is acyclic (except in dimension 0) by
assumption. The resulting natural transformation induces isomorphisms H•(X) →
HF

• (X) for X contractible, since all the homology is concentrated in degree 0 and
this was true in degree 0 for a point. �

(c) Now assume in addition that the natural map (Dn, Sn−1) → (Sn, pt) (obtained by
collapsing Sn−1 to a point) induces an isomorphism on the relative HF

n groups for all
n ≥ 1. (This is a weak form of the excision axiom.) Also assume that F (X ∐ Y ) =
F (X)⊕F (Y ). (Here ∐ denotes the disjoint union of spaces.) Deduce that Φ induces
isomorphisms H•(S

n) → HF
• (Sn) for each n. (Hint: Start by proving this for n = 0,

and proceed by induction on n.)
Solution. Since S0 = pt∐ pt and Φ induces isomorphisms H•(pt) → HF

• (pt), Φ also
induces isomorphisms H•(S

0) → HF
• (S0) by the additivity axiom. We also know Φ

induces isomorphisms H•(D
n) → HF

• (Dn), since Dn is contractible. Now we proceed
by induction using the following scheme:

Φ homology iso for Sn−1
(1)

+3 Φ homology iso for (Dn, Sn−1)

Φ homology iso for (Dn, Sn−1)
(2)

+3 Φ homology iso for Sn.

Implication (1) comes from the Five Lemma applied to the commuting diagram

Hk(S
n−1) //

∼=
��

Hk(D
n) //

∼=
��

Hk(D
n, Sn−1) //

��

Hk−1(S
n−1) //

∼=
��

Hk−1(D
n)

∼=
��

HF
k (Sn−1) // HF

k (Dn) // HF
k (Dn, Sn−1) // HF

k−1(S
n−1) // HF

k−1(D
n).

Implication (2) is similar, using the exact sequences of the pair (Sn, pt) and the
excision isomorphisms Hk(D

n, Sn−1) → Hk(S
n, pt) and HF

k (Dn, Sn−1) → HF
k (Sn, pt).

Problem 5.

Let n ≥ 3 and suppose X is a CW complex with one 0-cell and all other cells of dimension
≥ n − 1. Suppose

Hn(X, Z) ∼= Zm ⊕ F,
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where F is a finite abelian group which is the direct sum of k finite cyclic groups.

(a) Show that you can attach m + k (n + 1)-cells to X, obtaining a new CW complex Y
with Hn(Y, Z) = 0 and Hj(Y, Z) ∼= Hj(X, Z) for j 6= n, n + 1.
Solution. We can identify Hn(X, Z) with the homology of the cellular chain com-
plex C•(X), where Cn(X) is the free abelian group on the n-cells. Choose cycles
c1, · · · , cm, cm+1, · · · , cm+k ∈ Cn(X) representing generators for Hn(X, Z), so that
c1, · · · , cm generate a copy of Zm in homology and cm+1, · · · , cm+k generate F , with
each cj generating a cyclic summand in homology. For each j, we claim we can at-
tach a cell en+1

j of dimension n + 1 to X in such a way that in the cellular chain

complex of the new space Y obtained by attaching these cells, ∂en+1
j = cj (∂ is the

cellular boundary map). Assuming that this is the case, we have Cp(Y ) = Cp(X) for
p 6= n + 1 and Cn+1(Y ) = Cn+1(X)⊕

⊕

j Zen+1
j , and the cellular boundary map of Y

is the same as for X except that ∂en+1
j = cj . So Zp(Y ) = Zp(X) for p 6= n + 1 and

Bp(Y ) = Bp(X) for p 6= n. Thus the homology of Y can only differ from that of X in
dimensions n and n+1. In dimension n, Zn(Y ) = Zn(X), while cj is now a boundary
for each j, so Hn(Y, Z) = 0.

It remains to verify the claim. This comes down to showing that given a cellular
cycle c of dimension n in X, we can attach an (n + 1)-cell having this chain as
boundary. The assumption n ≥ 3 comes into this part of the proof since it implies
simple connectivity of X. Since X is simply connected and (n − 2)-connected, the
Hurewicz map πk(X) → Hk(X, Z) is an isomorphism in dimension k = n − 1 and
surjective in dimension k = n. The surjectivity of πn(X) → Hn(X, Z) means that we
choose f : Sn → X representing the homology class of c. If we use this map as an
attaching map of an (n + 1)-cell, this cell will have c as its cellular boundary, which
immediately proves the claim.

Alternatively, if one doesn’t want to appeal to the Hurewicz theorem, consider the
long exact sequence

πn(Xn) → πn(Xn, Xn−1) = Cn(X)
∂
−→ πn−1(X

n−1).

Think of c as representing a class in πn(Xn, Xn−1). The map πn(Xn, Xn−1)
∂
−→

πn−1(X
n−1), followed by the canonical map πn−1(X

n−1) → πn−1(X
n−1, Xn−2) =

Cn−1(X), can be identified with the cellular boundary map, and since c is a ho-
mology cycle, ∂c goes to 0 in πn−1(X

n−1, Xn−2) and thus comes from a class in
πn−1(X

n−2). But X was assumed to have no cells of dimension 1, · · · , n − 2, so
∂c = 0 in πn−1(X

n−1). (We’ve used the assumption n ≥ 3 to guarantee that all the
homotopy sets are abelian groups.) Thus we can lift c to a map Sn → Xn. This lift
is the desired attaching map of the (n + 1)-cell. �

(b) What is Hn+1(Y, Z)?
Solution. Look at the exact sequence

Hn+2(Y, X)
∂
−→ Hn+1(X) → Hn+1(Y ) → Hn+1(Y, X)

∂
−→ Hn(X) → Hn(Y ) = 0.
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Here Hn+2(Y, X) = 0 (since X and Y have the same (n + 2)-cells), Hn+1(Y, X) is
the free abelian group on the en+1

j , and ∂en+1
j = [cj ] by construction. The [cj ] for

j ≤ m generate a summand of Zm inside Hn(X), so the boundary map restricted to
⊕

j≤m Zen+1
j is an isomorphism onto this summand. Hence the exact sequence comes

down to

0 → Hn+1(X) → Hn+1(Y ) →
⊕

j>m

Zen+1
j

∂
−→ F → 0.

Since F is finite,

ker

(

m+k
⊕

j=m+1

Zen+1
j

∂
−→ F

)

∼= Zk,

and so Hn+1(Y, Z) ∼= Hn(X, Z) ⊕ Zk. �

(c) Show that if X = Sn, Y can be taken to be Dn+1.
Solution. Dn+1 can be viewed as the result of attaching an (n + 1)-cell to Sn, with
attaching map the identity map Sn → Sn. �

Problem 6.

Suppose Mn is a compact connected orientable topological n-manifold with boundary a
rational homology sphere, i.e., with H•(∂M, Q) ∼= H•(S

n−1, Q).

(a) Assuming n is odd, use Poincaré duality (with coefficients Q) to show that M has
Euler characteristic χ(M) = 1.
Solution. Let H• denote homology with coefficients in Q. We have the long exact
homology sequence

· · · → Hk(∂M) → Hk(M) → Hk(M, ∂M) → Hk−1(∂M) → · · ·

as well as the universal coefficient relation Hk ∼= H∗
k and Poincaré duality:

Hk(M, ∂M) ∼= Hn−k(M).

Certainly Hn(M) ∼= H0(M, ∂M) = 0 and H0(M) ∼= Q. It helps to separate out
the case n = 1; in this case M ∼= [0, 1] so the result is obvious. Otherwise, for
1 ≤ k ≤ n − 2, Hk(∂M) = 0, and for k = 0, the map Hk(∂M) → Hk(M) is an
isomorphism. So for 1 ≤ k ≤ n − 1, the exact sequence gives Hk(M) ∼= Hk(M, ∂M)
and thus

βk(M) = dim Hk(M) = dim Hk(M, ∂M)

= dim Hk(M, ∂M) (by UCT)

= dim Hn−k(M) = βn−k(M).
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Putting everything together,

χ(M) = β0(M) + (−1)nβn(M) +

n−1
∑

k=1

(−1)kβk(M)

= 1 + 0 +

(n−1)/2
∑

k=1

(

(−1)kβk(M) + (−1)n−kβn−k(M)
)

= 1. �

(b) Assuming n ≡ 2 (mod 4), show that the Euler characteristic χ(M) of M is odd.
Solution. Everything is the same as before except for the last step. We have

χ(M) = β0(M) + (−1)nβn(M) +

n−1
∑

k=1

(−1)kβk(M)

= 1 + 0 + (−1)n/2βn/2(M) +

(n/2)−1
∑

k=1

(

(−1)kβk(M) + (−1)n−kβn−k(M)
)

= 1 − βn/2(M) +

(n/2)−1
∑

k=1

2(−1)kβk(M).

So we need to show the middle Betti number βn/2(M) is even. This follows from

the fact that the cup-product pairing Hn/2(M) ⊗ Hn/2(M, ∂M) → Hn(M, ∂M) ∼= Q

is non-degenerate by Poincaré duality, along with the isomorphism Hn/2(M, ∂M) ∼=
Hn/2(M) (from the long exact sequence of the pair). So the cup-product pairing
Hn/2(M, ∂M)⊗Hn/2(M, ∂M) → Hn(M, ∂M) ∼= Q is non-degenerate, but also skew-
symmetric (since n/2 is odd). Since any non-degenerate skew-symmetric bilinear

form on a finite-dimensional Q-vector space is isomorphic to

(

0r 1r

−1r 0r

)

for some r,

it follows that βn/2(M, ∂M) = βn/2(M) is even. �


