TOPOLOGY/GEOMETRY QUALIFYING EXAMINATION

UNIVERSITY OF MARYLAND

Unless otherwise stated, you may appeal to a "well known theorem" in your solution to a problem. If you do, it is your responsibility to clarify exactly which theorem you are using and to justify its use. In any part of a problem with multiple parts, you may assume the answer to any previous part, even if you have not proved it.

NOTE: On this exam not all the problems are equally weighted. Problem 5 is worth 20 points and problems 1-4 are each worth 10.

(1) Let (X, d_X) and (Y, d_Y) be metric spaces. A map $\pi : X \longrightarrow Y$ is called a *submetry* if for every $x \in X$, and any r > 0,

$$\pi(D(x,r)) = D(\pi(x),r)$$

where D(x, r) denotes the closed r-ball about x.

- (a) Show that π is surjective if X is nonempty.
- (b) Show that π is continuous.
- (c) Show that π is open. [A map $f : A \longrightarrow B$ is open if and only if for every open subset $U \subset A$, the image f(U) is open in B.]
- (d) Suppose that $y_1, y_2 \in Y$. Suppose that $x_1 \in X$ satisfies $\pi(x_1) = y_1$. Show that there exists $x_2 \in X$ such that $\pi(x_2) = y_2$ and $d_X(x_1, x_2) = d_Y(y_1, y_2)$.
- (2) Let $F : \mathbb{R}^4 \longrightarrow \mathbb{R}$ be the quadratic function

$$F(x, y, z, t) = 4x^{2} + 3y^{2} + 3z^{2} + t^{2}.$$

Let $f: S^3 \to \mathbb{R}$ be the restriction of F to the unit sphere $S^3 \subset \mathbb{R}^4$.

- (a) Let \mathbb{RP}^3 be real projective space and let $\pi : S^3 \longrightarrow \mathbb{RP}^3$ be the 2-fold covering map. Give \mathbb{RP}^3 the unique differentiable structure for which π is a local diffeomorphism. Prove that f descends to a smooth function \overline{f} on \mathbb{RP}^3 ;
 - that is, there exists a smooth function \overline{f} on \mathbb{RP}^3 such that $\overline{f} \circ \pi = f$.
- (b) Find the critical points of \bar{f} .

Date: 22 January 2003.

(3) The picture on the following page illustrates the map $p: X \longrightarrow Y$ of adjunction spaces X, Y which we describe precisely as follows. For n = 1, 2, 3, 4, 5 let C_n denote the circle $\{(e^{i\theta}, n) \mid \theta \in \mathbb{R}\}$. Choose basepoints

$$a_1 = (1, 2) \in C_2$$

 $b_1 = (-1, 2) \in C_2$
 $c_1 = (1, 1) \in C_1$

and

$$a_{2} = (1,3) \in C_{3}$$

$$b_{2} = (e^{2\pi i/3},3) \in C_{3}$$

$$c_{2} = (e^{-2\pi i/3},3) \in C_{3}$$

Let X denote the identification space of $C_1 \coprod C_2 \coprod C_3$ under the equivalence relation defined by:

$$a_1 \sim a_2,$$

$$b_1 \sim b_2,$$

$$c_1 \sim c_2.$$

Let $a, b, c \in X$ be the corresponding images in X. Let Y denote the identification space of $C_4 \coprod C_5$ under the equivalence relation defined by $(1, 4) \sim (1, 5)$ and let $y \in Y$ be the common image of these points in Y.

There is a continuous map $p: X \longrightarrow Y$ defined as follows:

$$(\zeta, n) \longmapsto \begin{cases} (\zeta, 4) & \text{if } n = 1\\ (\zeta^2, 4) & \text{if } n = 2\\ (\zeta^3, 5) & \text{if } n = 3. \end{cases}$$

Informally, p maps the circle C_1 once around C_4 and C_2 twice around C_4 . The circle C_4 is attached to C_5 at the point y, and p wraps C_3 three times around C_5 . The points a, b, c comprise the inverse image $p^{-1}\{y\}$.

- (a) Show that p is a covering space.
- (b) Determine k such that X is homotopy equivalent to a wedge of k copies of S^1 .
- (c) Prove or disprove: p is a regular covering space.

 $\mathbf{2}$

(4) Let p, q be relatively prime integers. Consider the following CW-complex: X has one 0-cell x_0 , two 1-cells labelled a and b, and two 2-cells labelled c, d. The boundary ∂c is attached to the 1-skeleton

$$X^1 = x_0 \cup a \cup b$$

by the map $a^p b^q$. That is, the attaching map for ∂c wraps p times around the *a*-circle and then *q*-times around the *b*-circle. The boundary ∂d is attached to X^1 by the map $aba^{-1}b^{-1}$, that is the map which wraps ∂d first around *a*, then around *b*, then around *a* in the opposite direction, and finally around *b* in the opposite direction.

- (a) Compute the fundamental group and the integral homology groups of X.
- (b) Show X is homotopy equivalent to S^2 with two points identified. [Hint: Think about (p,q) = (1,0).]

UNIVERSITY OF MARYLAND

- (5) In the following 20-point problem, any part may be used (even if you didn't prove it) in any later part. (χ denotes Euler characteristic. By definition a manifold is *closed* if it is compact and has empty boundary.)
 - (a) Suppose that M is a closed, connected, orientable odddimensional manifold. Show that $\chi(M) = 0$.
 - (b) Suppose X is a compact, connected, oriented *n*-manifold with or without boundary. Use Poincaré-Lefschetz duality to show $H_{n-1}(X,\mathbb{Z})$ is free abelian. (You may assume all homology groups are finitely generated abelian groups.)
 - (c) Let $n \ge 1$ be an integer. Show that there exists a connected, closed, orientable *n*-dimensional manifold M with $\chi(M) = 0$.
 - (d) If M # N denotes the orientable, connected sum of the closed, orientable *n*-manifolds M and N, show

$$\chi(M\#N) = \chi(M) + \chi(N) - (1 + (-1)^n).$$

(The connected sum of M # N is obtained by gluing together complements $M^{\backslash}D_{M}^{n}$ and $N^{\backslash}D_{N}^{n}$, where D_{M}^{n} and D_{N}^{n} are discs in M and N respectively, by an orientationreversing homeomorphism $\partial D_{M}^{n} \approx \partial D_{N}^{n}$ of their boundaries.)

(e) Suppose there exists a closed, orientable *n*-dimensional manifold with $\chi(M)$ an odd integer greater than 1. Show that for any integer *l* there exists a connected, closed, orientable *n*-dimensional manifold *W* with $\chi(W) = l$.

[Hint: Try to find closed orientable manifolds of arbitrarily large even or odd Euler characteristic.]

- (f) Suppose n is a positive integer divisible by 4 and m is an integer. Show there exists an closed, orientable n-dimensional manifold of Euler characteristic m.
- (g) Suppose M is a closed orientable 2k-dimensional manifold where k is an integer ≥ 1 . Let F be a field of characteristic $\neq 2$. Use the fact that if A is a $m \times m$ skew-symmetric matrix with entries in F having nonzero determinant then m is even to show the following: Any closed orientable 4n+2-dimensional manifold has even Euler characteristic.

4