TOPOLOGY/GEOMETRY QUALIFYING EXAMINATION

UNIVERSITY OF MARYLAND

Unless otherwise stated, you may appeal to a "well known theorem" in your solution to a problem. If you do, it is your responsibility to clarify exactly which theorem you are using and to justify its use. In any part of a problem with multiple parts, you may assume the answer to any previous part, even if you have not proved it.
NOTE: On this exam not all the problems are equally weighted. Problem 5 is worth 20 points and problems 1-4 are each worth 10.
(1) Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. A map $\pi: X \longrightarrow Y$ is called a submetry if for every $x \in X$, and any $r>0$,

$$
\pi(D(x, r))=D(\pi(x), r)
$$

where $D(x, r)$ denotes the closed r-ball about x.
(a) Show that π is surjective if X is nonempty.
(b) Show that π is continuous.
(c) Show that π is open. [A map $f: A \longrightarrow B$ is open if and only if for every open subset $U \subset A$, the image $f(U)$ is open in B.]
(d) Suppose that $y_{1}, y_{2} \in Y$. Suppose that $x_{1} \in X$ satisfies $\pi\left(x_{1}\right)=y_{1}$. Show that there exists $x_{2} \in X$ such that $\pi\left(x_{2}\right)=y_{2}$ and $d_{X}\left(x_{1}, x_{2}\right)=d_{Y}\left(y_{1}, y_{2}\right)$.
(2) Let $F: \mathbb{R}^{4} \longrightarrow \mathbb{R}$ be the quadratic function

$$
F(x, y, z, t)=4 x^{2}+3 y^{2}+3 z^{2}+t^{2} .
$$

Let $f: S^{3} \rightarrow \mathbb{R}$ be the restriction of F to the unit sphere $S^{3} \subset \mathbb{R}^{4}$.
(a) Let $\mathbb{R} \mathbb{P}^{3}$ be real projective space and let $\pi: S^{3} \longrightarrow \mathbb{R P}^{3}$ be the 2 -fold covering map. Give $\mathbb{R P}^{3}$ the unique differentiable structure for which π is a local diffeomorphism.
Prove that f descends to a smooth function \bar{f} on $\mathbb{R P}^{3}$; that is, there exists a smooth function \bar{f} on \mathbb{R}^{3} such that $\bar{f} \circ \pi=f$.
(b) Find the critical points of \bar{f}.
(3) The picture on the following page illustrates the map $p: X \longrightarrow$ Y of adjunction spaces X, Y which we describe precisely as follows. For $n=1,2,3,4,5$ let C_{n} denote the circle $\left\{\left(e^{i \theta}, n\right) \mid\right.$ $\theta \in \mathbb{R}\}$. Choose basepoints

$$
\begin{aligned}
a_{1} & =(1,2) \in C_{2} \\
b_{1} & =(-1,2) \in C_{2} \\
c_{1} & =(1,1) \in C_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
a_{2} & =(1,3) \in C_{3} \\
b_{2} & =\left(e^{2 \pi i / 3}, 3\right) \in C_{3} \\
c_{2} & =\left(e^{-2 \pi i / 3}, 3\right) \in C_{3} .
\end{aligned}
$$

Let X denote the identification space of $C_{1} \amalg C_{2} \coprod C_{3}$ under the equivalence relation defined by:

$$
\begin{aligned}
a_{1} & \sim a_{2}, \\
b_{1} & \sim b_{2}, \\
c_{1} & \sim c_{2} .
\end{aligned}
$$

Let $a, b, c \in X$ be the corresponding images in X. Let Y denote the identification space of $C_{4} \coprod C_{5}$ under the equivalence relation defined by $(1,4) \sim(1,5)$ and let $y \in Y$ be the common image of these points in Y.

There is a continuous map $p: X \longrightarrow Y$ defined as follows:

$$
(\zeta, n) \longmapsto \begin{cases}(\zeta, 4) & \text { if } n=1 \\ \left(\zeta^{2}, 4\right) & \text { if } n=2 \\ \left(\zeta^{3}, 5\right) & \text { if } n=3\end{cases}
$$

Informally, p maps the circle C_{1} once around C_{4} and C_{2} twice around C_{4}. The circle C_{4} is attached to C_{5} at the point y, and p wraps C_{3} three times around C_{5}. The points a, b, c comprise the inverse image $p^{-1}\{y\}$.
(a) Show that p is a covering space.
(b) Determine k such that X is homotopy equivalent to a wedge of k copies of S^{1}.
(c) Prove or disprove: p is a regular covering space.
(4) Let p, q be relatively prime integers. Consider the following CW-complex: X has one 0 -cell x_{0}, two 1 -cells labelled a and b, and two 2 -cells labelled c, d. The boundary ∂c is attached to the 1 -skeleton

$$
X^{1}=x_{0} \cup a \cup b
$$

by the map $a^{p} b^{q}$. That is, the attaching map for ∂c wraps p times around the a-circle and then q-times around the b-circle. The boundary ∂d is attached to X^{1} by the map $a b a^{-1} b^{-1}$, that is the map which wraps ∂d first around a, then around b, then around a in the opposite direction, and finally around b in the opposite direction.
(a) Compute the fundamental group and the integral homology groups of X.
(b) Show X is homotopy equivalent to S^{2} with two points identified. [Hint: Think about $(p, q)=(1,0)$.]
(5) In the following 20-point problem, any part may be used (even if you didn't prove it) in any later part. (χ denotes Euler characteristic. By definition a manifold is closed if it is compact and has empty boundary.)
(a) Suppose that M is a closed, connected, orientable odddimensional manifold. Show that $\chi(M)=0$.
(b) Suppose X is a compact, connected, oriented n-manifold with or without boundary. Use Poincaré-Lefschetz duality to show $H_{n-1}(X, \mathbb{Z})$ is free abelian. (You may assume all homology groups are finitely generated abelian groups.)
(c) Let $n \geq 1$ be an integer. Show that there exists a connected, closed, orientable n-dimensional manifold M with $\chi(M)=0$.
(d) If $M \# N$ denotes the orientable, connected sum of the closed, orientable n-manifolds M and N, show

$$
\chi(M \# N)=\chi(M)+\chi(N)-\left(1+(-1)^{n}\right) .
$$

(The connected sum of $M \# N$ is obtained by gluing together complements $M \backslash D_{M}^{n}$ and $N \backslash D_{N}^{n}$, where D_{M}^{n} and D_{N}^{n} are discs in M and N respectively, by an orientationreversing homeomorphism $\partial D_{M}^{n} \approx \partial D_{N}^{n}$ of their boundaries.)
(e) Suppose there exists a closed, orientable n-dimensional manifold with $\chi(M)$ an odd integer greater than 1 . Show that for any integer l there exists a connected, closed, orientable n-dimensional manifold W with $\chi(W)=l$.
[Hint: Try to find closed orientable manifolds of arbitrarily large even or odd Euler characteristic.]
(f) Suppose n is a positive integer divisible by 4 and m is an integer. Show there exists an closed, orientable n dimensional manifold of Euler characteristic m.
(g) Suppose M is a closed orientable $2 k$-dimensional manifold where k is an integer ≥ 1. Let F be a field of characteristic $\neq 2$. Use the fact that if A is a $m \times m$ skew-symmetric matrix with entries in F having nonzero determinant then m is even to show the following: Any closed orientable $4 n+2$-dimensional manifold has even Euler characteristic.

