Algebraic Topology (Mathematics 734, Prof. Rosenberg)
 Final Examination Solutions
 May, 2004

2. (a) By the Euler-Poincaré principle, $\chi\left(S^{n}\right)=\chi\left(X^{G}\right)+\chi\left(X, X^{G}\right)$. But $\chi\left(X, X^{G}\right)$ is the alternating sum of the number of relative cells in each dimension. Since G permutes these cells freely, the number of them in each dimension is divisible by p, and hence $\chi\left(X, X^{G}\right)$ is a multiple of p. The result follows.
(b) Free action means there is no fixed set, i.e., $X^{G}=\emptyset$. Then if n is even, we have $2=\chi\left(S^{n}\right) \equiv 0 \bmod p$. If p is odd, this is impossible.
3. Method 1 (cell decomposition). Choose the standard CW decompositions of D^{2} with a 0 -cell, a 1-cell, and a 2 -cell, and of S^{1} with a 0 -cell and a 1 -cell. Taking products gives a CW decomposition of X with 6 cells. Now collapse the subcomplex T^{2} to a point. This removes two 1-cells and a 2-cell, and leaves a CW decomposition of $X / \partial X$ with a 3 -cell, a 2 -cell, and a 0 -cell. The one cellular boundary map that must be computed goes from 3 -chains to 2 -chains. The 3 -cell in X is $(2$-cell $) \times(1$-cell $)$, and its cellular boundary is (1-cell) $\times(1$-cell) which is collapsed to the 0 -cell in $X / \partial X$, and thus the cellular boundary map can be seen to be 0 . So $H_{j}(X / \partial X) \cong \mathbb{Z}$ for $j=0,2,3,0$ otherwise. By the universal coefficient theorem, one also has $H^{j}(X / \partial X) \cong \mathbb{Z}$ for $j=0,2,3,0$ otherwise.

Method 2 (long exact sequence). Since ∂X is nicely embedded in X (i.e., is a deformation retract of a collar neighborhood), $\widetilde{H}_{\bullet}(X / \partial X) \cong H_{\bullet}(X, \partial X)$. The latter can be computed from the long exact sequence of the pair $(X, \partial X)$. First of all, X is homotopy equivalent to S^{1}, so $H_{j}(X)=0$ for $j \geq 2$. And in dimension 1 , the map $H_{1}(\partial X) \rightarrow H_{1}(X)$ is clearly equivalent to the map $H_{1}\left(S^{1} \times S^{1}\right) \rightarrow H_{1}\left(S^{1}\right)$ induced by projection onto the second factor, which is split surjective. So the exact sequence is

$$
\begin{aligned}
& 0 \rightarrow H_{3}(X, \partial X) \rightarrow H_{2}(\partial X)=\mathbb{Z} \rightarrow 0 \\
& \qquad H_{2}(X, \partial X) \rightarrow H_{1}(\partial X)=\mathbb{Z}^{2} \rightarrow H_{1}(X)=\mathbb{Z} \rightarrow H_{1}(X, \partial X) \\
& \\
& \quad \rightarrow H_{0}(\partial X)=\mathbb{Z} \xrightarrow{\cong} H_{0}(X)=\mathbb{Z} .
\end{aligned}
$$

From this we see $H_{j}(X, \partial X) \cong \mathbb{Z}$ for $j=2,3,0$ otherwise. Hence $H_{j}(X / \partial X) \cong \mathbb{Z}$ for $j=0,2,3,0$ otherwise. By the universal coefficient theorem, one also has $H^{j}(X / \partial X) \cong \mathbb{Z}$ for $j=0,2,3,0$ otherwise.

Method 3 (Poincaré duality). By Poincaré duality for manifolds with boundary, $H^{j}(X, \partial X) \cong H_{3-j}(X)$. The latter is non-zero only for $3-j=0$ or 1 . So $H^{j}(X, \partial X) \cong \mathbb{Z}$ for $j=2$ or 3,0 otherwise. By the UCT, we similarly have $H_{j}(X, \partial X) \cong \mathbb{Z}$ for $j=2$ or 3 , 0 otherwise. The rest of the solution is as in Method 2.
4. By the $\mathrm{UCT}, H^{n}(M) \cong \operatorname{Hom}\left(H_{n}(M), \mathbb{Z}\right) \cong \mathbb{Z}$, and this identification is natural, so f^{*} on $H^{n}(M)$ is just the adjoint of f_{*} on $H_{n}(M)$. Hence the degree can also be described as the integer m such that $f^{*}: H^{n}(M) \rightarrow H^{n}(M)$ is multiplication by m.
(a) If $M=\mathbb{C P}^{2}$, then $n=4$ and $H^{4}(M)$ is generated by α^{2}, where α is a generator of $H^{2}(M)$. For any map $f: M \rightarrow M, f^{*}$ is a ring homomorphism, and thus $f^{*}\left(\alpha^{2}\right)=\left(f^{*} \alpha\right)^{2}$. Since $H^{2}(M) \cong \mathbb{Z}, f^{*} \alpha=k \alpha$ for some k, and then $f^{*}\left(\alpha^{2}\right)=k^{2} \alpha^{2}$, so $\operatorname{deg} f=k^{2}$ is a perfect square.
(b) If M is smooth, then the de Rham theorem says that $H_{\text {deR }}^{n}(M) \cong H^{n}(M ; \mathbb{R}) \cong$ $H^{n}(M ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{R}$, and the isomorphisms are natural. Hence we may also compute $\operatorname{deg} f$ from the factor by which f^{*} acts on $H_{\text {deR }}^{n}(M)$. Now every n-form on M is closed (since $\operatorname{dim} M=n$), and so such a form ω represents a class in $H_{\text {deR }}^{n}(M)$. So we have $f^{*}(\omega) \equiv$ ($\operatorname{deg} f) \omega$ modulo exact forms. By Stokes' Theorem, exact forms integrate to 0 . Hence $\int_{M} f^{*}(\omega)=(\operatorname{deg} f) \int_{M} \omega$.
5. (a) Since X has no cells in adjacent dimensions, the cellular boundary maps must vanish, and $H_{j}(X) \cong \mathbb{Z}$ for $j=0,2,4$, and is 0 otherwise. Similarly (via the cellular

(b) Since β generates $H^{4}(X), \alpha \cup \alpha$ must be a multiple of β.
(c) Each point in D^{4} can be written as $\lambda \cdot x$ with $0 \leq \lambda \leq 1$ and $x \in S^{3}$, and this decomposition ("polar coordinates") is unique unless $\lambda=0$, in which case all choices for x give the same point $0 \in \mathbb{R}^{4}$. Thus we can define a map $\widetilde{g}: D^{4} \rightarrow D^{4}$ by $\widetilde{g}(\lambda \cdot x)=\lambda \cdot g(x)$, and this map sends 0 to 0 and restricts to g on S^{3}. We claim that id $\coprod \widetilde{g}$ descends to a well defined map $X \rightarrow \mathbb{C P}^{2}$. It suffices to check that the identifications are preserved.

If $x \in S^{3}$, then in X, x is identified in X to $f(x)$, which maps under id $S_{S^{2}}$ to $f(x)=$ $h \circ g(x)$. On the other hand, $\widetilde{g}(x)=g(x)$ is identified in $\mathbb{C P}^{2}$ to $h(g(x))=f(x)$. So this shows we get a well defined map $\varphi: X \rightarrow \mathbb{C P}^{2}$.

Finally, let α^{\prime} be the usual generator of $H^{2}\left(\mathbb{C P}^{2}\right)$ (coming from the standard orientation on $\mathbb{C P}^{1}=S^{2} \subset \mathbb{C P}^{2}$). Since φ was defined using the identity map on S^{2} (which is the 2-skeleton of both X and $\left.\mathbb{C P}^{2}\right), \varphi^{*}\left(\alpha^{\prime}\right)=\alpha$. And since φ was defined using \widetilde{g} on the 4 -cell, $\varphi^{*}: H^{4}\left(\mathbb{C P}^{2}\right) \rightarrow H^{4}(X)$ can be identified with the map induced by \widetilde{g} on $H^{4}\left(D^{4}, S^{3}\right) \cong \mathbb{Z}$. But we have a commutative diagram

Since g has degree k, that means φ^{*} sends the generator $\left(\alpha^{\prime}\right)^{2}$ of $H^{4}\left(\mathbb{C P}^{2}\right)$ to k times the corresponding generator β of $H^{4}(X)$. But then

$$
\alpha^{2}=\left(\varphi^{*}\left(\alpha^{\prime}\right)\right)^{2}=\varphi^{*}\left(\alpha^{\prime 2}\right)=k \beta
$$

and $m=k$.

