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2. (a) By the Euler-Poincaré principle, χ(Sn) = χ(XG) + χ(X, XG). But χ(X, XG)
is the alternating sum of the number of relative cells in each dimension. Since G permutes
these cells freely, the number of them in each dimension is divisible by p, and hence
χ(X, XG) is a multiple of p. The result follows.

(b) Free action means there is no fixed set, i.e., XG = ∅. Then if n is even, we have
2 = χ(Sn) ≡ 0 mod p. If p is odd, this is impossible.

3. Method 1 (cell decomposition). Choose the standard CW decompositions of
D2 with a 0-cell, a 1-cell, and a 2-cell, and of S1 with a 0-cell and a 1-cell. Taking products
gives a CW decomposition of X with 6 cells. Now collapse the subcomplex T 2 to a point.
This removes two 1-cells and a 2-cell, and leaves a CW decomposition of X/∂X with a
3-cell, a 2-cell, and a 0-cell. The one cellular boundary map that must be computed goes
from 3-chains to 2-chains. The 3-cell in X is (2-cell)×(1-cell), and its cellular boundary is
(1-cell)×(1-cell) which is collapsed to the 0-cell in X/∂X, and thus the cellular boundary
map can be seen to be 0. So Hj(X/∂X) ∼= Z for j = 0, 2, 3, 0 otherwise. By the universal
coefficient theorem, one also has Hj(X/∂X) ∼= Z for j = 0, 2, 3, 0 otherwise.

Method 2 (long exact sequence). Since ∂X is nicely embedded in X (i.e., is a
deformation retract of a collar neighborhood), H̃•(X/∂X) ∼= H•(X, ∂X). The latter can
be computed from the long exact sequence of the pair (X, ∂X). First of all, X is homotopy
equivalent to S1, so Hj(X) = 0 for j ≥ 2. And in dimension 1, the map H1(∂X) → H1(X)
is clearly equivalent to the map H1(S1 × S1) → H1(S1) induced by projection onto the
second factor, which is split surjective. So the exact sequence is

0 → H3(X, ∂X) → H2(∂X) = Z → 0
→ H2(X, ∂X) → H1(∂X) = Z2 � H1(X) = Z → H1(X, ∂X)

→ H0(∂X) = Z
∼=−→ H0(X) = Z.

From this we see Hj(X, ∂X) ∼= Z for j = 2, 3, 0 otherwise. Hence Hj(X/∂X) ∼= Z for
j = 0, 2, 3, 0 otherwise. By the universal coefficient theorem, one also has Hj(X/∂X) ∼= Z
for j = 0, 2, 3, 0 otherwise.

Method 3 (Poincaré duality). By Poincaré duality for manifolds with boundary,
Hj(X, ∂X) ∼= H3−j(X). The latter is non-zero only for 3− j = 0 or 1. So Hj(X, ∂X) ∼= Z
for j = 2 or 3, 0 otherwise. By the UCT, we similarly have Hj(X, ∂X) ∼= Z for j = 2 or 3,
0 otherwise. The rest of the solution is as in Method 2.

4. By the UCT, Hn(M) ∼= Hom(Hn(M), Z) ∼= Z, and this identification is natural, so
f∗ on Hn(M) is just the adjoint of f∗ on Hn(M). Hence the degree can also be described
as the integer m such that f∗: Hn(M) → Hn(M) is multiplication by m.
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(a) If M = CP2, then n = 4 and H4(M) is generated by α2, where α is a generator of
H2(M). For any map f : M → M , f∗ is a ring homomorphism, and thus f∗(α2) = (f∗α)2.
Since H2(M) ∼= Z, f∗α = kα for some k, and then f∗(α2) = k2α2, so deg f = k2 is a
perfect square.

(b) If M is smooth, then the de Rham theorem says that Hn
deR(M) ∼= Hn(M ; R) ∼=

Hn(M ; Z) ⊗Z R, and the isomorphisms are natural. Hence we may also compute deg f
from the factor by which f∗ acts on Hn

deR(M). Now every n-form on M is closed (since
dim M = n), and so such a form ω represents a class in Hn

deR(M). So we have f∗(ω) ≡
(deg f)ω modulo exact forms. By Stokes’ Theorem, exact forms integrate to 0. Hence∫

M
f∗(ω) = (deg f)

∫
M

ω.

5. (a) Since X has no cells in adjacent dimensions, the cellular boundary maps must
vanish, and Hj(X) ∼= Z for j = 0, 2, 4, and is 0 otherwise. Similarly (via the cellular
cochain complex), H(X) ∼= Z for j = 0, 2, 4, and is 0 otherwise.

(b) Since β generates H4(X), α ∪ α must be a multiple of β.
(c) Each point in D4 can be written as λ · x with 0 ≤ λ ≤ 1 and x ∈ S3, and this

decomposition (“polar coordinates”) is unique unless λ = 0, in which case all choices for x
give the same point 0 ∈ R4. Thus we can define a map g̃: D4 → D4 by g̃(λ · x) = λ · g(x),
and this map sends 0 to 0 and restricts to g on S3. We claim that id

∐
g̃ descends to a

well defined map X → CP2. It suffices to check that the identifications are preserved.
If x ∈ S3, then in X, x is identified in X to f(x), which maps under idS2 to f(x) =

h ◦ g(x). On the other hand, g̃(x) = g(x) is identified in CP2 to h(g(x)) = f(x). So this
shows we get a well defined map ϕ: X → CP2.

Finally, let α′ be the usual generator of H2(CP2) (coming from the standard orienta-
tion on CP1 = S2 ⊂ CP2). Since ϕ was defined using the identity map on S2 (which is the
2-skeleton of both X and CP2), ϕ∗(α′) = α. And since ϕ was defined using g̃ on the 4-cell,
ϕ∗: H4(CP2) → H4(X) can be identified with the map induced by g̃ on H4(D4, S3) ∼= Z.
But we have a commutative diagram

H3(S3) ∂−−−−→ H4(D4, S3)

g∗
y g̃∗

y
H3(S3) ∂−−−−→ H4(D4, S3).

Since g has degree k, that means ϕ∗ sends the generator (α′)2 of H4(CP2) to k times the
corresponding generator β of H4(X). But then

α2 = (ϕ∗(α′))2 = ϕ∗(α′2) = kβ

and m = k.
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