DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION August, 2003

Probability (Ph. D. Version)

Instructions to the Student

- a. Answer all six questions. Each will be graded from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (**NOT YOUR NAME**) on the outside cover.
- c. Keep scratch work on separate pages in the same booklet.
- d. If you use a "well known" theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.

1. Let X_1, X_2, \ldots be an infinite sequence of independent identically distributed random variables having double exponential distribution with density

$$f(x) = (1/2)e^{-|x|}, -\infty < x < +\infty.$$

Prove that with probability one,

$$\lim \sup_{n \to \infty} \frac{|X_n|}{\ln n} = 1.$$

2. Let $\{X_n, n = 1, 2, ...\}$ be a random process with constant mean $E(X_n) = \mu$ and covariance $R(n-m) = \operatorname{cov}(X_n, X_m)$ depending only on n-m. Prove that if $R(n) \to 0, n \to \infty$, then $(1/n) \sum_{i=1}^{n} X_i \to \mu$ in probability as $n \to \infty$. **3**. Let X_1, X_2, \ldots be a sequence of independent random variables, X_n having a uniform distribution on [-n, n], $n = 1, 2, \ldots$ Prove that the Central Limit Theorem (CLT) holds: for $S_n = X_1 + \ldots + X_n$, $(S_n - E(S_n))/\sqrt{\operatorname{var}(S_n)}$ converges in distribution to $Z \sim N(0, 1)$ as $n \to \infty$.

4. Let ξ_1 , ξ_2 , ξ_3 be random variables with finite second moments. Prove that the relations

$$E(\xi_1|\xi_2) = \xi_2, \ E(\xi_2|\xi_3) = \xi_3, \ E(\xi_3|\xi_1) = \xi_1$$

imply that with probability one $\xi_1 = \xi_2 = \xi_3$.

5. Let X be a random variable with symmetric distribution. Prove the following properties of its characteristic function $f(t) = E(e^{itX})$: (i) $1 + f(2t) \ge 2[f(t)]^2$, (ii) if $E|X| < \infty$, then f(t) satisfies the Lipschitz condition, i.e.,

$$|f(t + \Delta) - f(t)| \le C|\Delta|$$
 for some $C > 0$ and all t, Δ .

6. For a sequence of random variables X_1, X_2, \ldots set $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ (the σ -algebra generated by X_1, \ldots, X_n).

(i) Prove that if (X_n, \mathcal{F}_n) , n = 1, 2, ... is a martingale with $E|X_n|$ finite for all n, the sequence of variances $\sigma_n^2 = \operatorname{var}(X_n)$, n = 1, 2, ... is nondecreasing. You must consider the cases of both finite and infinite variances.

(ii) What are necessary and sufficient conditions for $\sigma_N^2 = \sigma_{N+1}^2 = \sigma_{N+2}^2 = \dots$ for some N?