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Instructions to the Student

a. Answer all six questions. Each will be graded from 0 to 10.

b. Use a different booklet for each question. Write the problem number
and your code number (NOT YOUR NAME) on the outside cover.

c. Keep scratch work on separate pages in the same booklet.

d. If you use a “well known” theorem in your solution to any problem, it
is your responsibility to make clear which theorem you are using and
to justify its use.

1. Suppose Xn → X in distribution as n tends to ∞, and assume that
for any finite c,

lim
n→∞

P (Yn > c) = 1

Show that we also have,

lim
n→∞

P (Xn + Yn > c) = 1

2. Let X1, X2, . . . be i.i.d. uniform on (0, 1), Sn = X1 + X2 + . . . + Xn,
and T = min{n : Sn > 1}.
(a) Calculate P (T > n), and E(T ).
(b) Calculate E(ST ).

3. Let F be the interarrival distribution which has a density function
(with respect to Lebesgue measure) and a finite mean. Let H(t) be the
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probability that there are an even number of renewals in (0, t], given an
arrival at time 0, where interarrival times are assumed independent.
(a) Write a renewal equation for H(t), in terms of F .
(b) Use a renewal theorem to find limt→∞H(t).

4. A spider hunting a fly moves between locations 1 and 2 according to a
Markov chain with transition matrix P ,

P11 = P22 = 0.7, P12 = P21 = 0.3,

starting in location 1. The fly, unaware of the spider, starts in location 2 and
moves according to a Markov chain with transition matrix Q,

Q11 = Q22 = 0.4, Q12 = Q21 = 0.6.

The spider catches the fly and the hunt ends at the first time when they
occupy the same location. The progress of the hunt, except for knowing the
location where it ends, can be described by a three-state Markov chain with
a single absorbing state representing the end of the hunt, and the other two
states exactly representing the spider and fly at distinct locations.
(a) Define the three states precisely, and obtain the transition matrix for this
three-state Markov chain.
(b) Find the average duration of the hunt.
(c) Find the probability that at time n the spider and fly are both at their
initial locations with the hunt still in progress.

5. Let X be a positive r.v. with finite mean. Let Yi,j, i, j ≥ 1 be r.v.’s
and

Xm,n = E[ X | Yi,j, i ≤ m, j ≤ n].

(a) Prove that (Xm,n, m, n ≥ 1) is a uniformly integrable family of r.v.’s.
(b) Explain why the r.v.’s Xm,n converge for each fixed n as m → ∞
and describe exactly the limiting r.v.

6. Let (Xn)n≥1 be a positive martingale. Prove from first principles (not
by directly citing a theorem) that for each n ≥ 1 and a > 0,

P (max
k≤n

Xk ≥ a) ≤ E(Xn)

a
.
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