DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION August, 2011

Probability (Ph. D. Version)

Instructions to the Student

- a. Answer all six questions. Each will be graded from 0 to 10
- b. Use a different booklet for each question. Write the problem number and your code number (NOT YOUR NAME) on the outside cover-
- c. Keep scratch work on separate pages in the same booklet.
- d. If you use a "well known" theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.
- 1. Let X_1, \dots, X_n, \dots be independent Gaussian random variables, having mean a and variance σ^2 . Define by recurrence the sequence

$$Y_0 = x \in \mathbb{R}, \quad Y_{n+1} = \lambda Y_n + X_{n+1},$$

for some $\lambda \in (-1,1)$. Prove that the sequence $\{Y_n\}_{n\in\mathbb{N}}$ is convergent in distribution and determine the limiting distribution.

- 2. Let Y_n be independent exponential random variables with parameter $\lambda=1$ and let Z_n be independent N(0,1) random variables. Find numerical sequences a_n and b_n such that both $\max(Y_1,\dots,Y_n)/a_n$ and $\max(Z_1,\dots,Z_n)/b_n$ converge in probability to 1 as $n\to\infty$
- 3 Mike starts watching a match between players \mathcal{A} and \mathcal{B} , assuming that it is equally likely that \mathcal{A} or \mathcal{B} is the better player. If \mathcal{A} is the better player, the probability that \mathcal{A} wins a set is 75 independently of the outcomes of the

other sets. If \mathcal{B} is the better player, the probability that \mathcal{B} wins a set is 75 independently of the outcomes of the other sets.

After three sets, the score is 2 sets to 1 with \mathcal{A} leading. What is the probability, in Mike's opinion, that \mathcal{A} will go on to win the match (which is played until either player wins 3 sets)?

- 4. On the last day of each month a king will add up to 1 kg of gold to his treasury. The actual amount he'll add is uniformly distributed on [0,1] and the amounts on different months are independent. Currently his treasury is empty. Assume that today is the first day of a month
- (a) What is the expected number of months (counting the current month as a full one) that will elapse before the treasury has at least 1 kg of gold?
- (b) What is the expected amount of gold that will be in the treasury on the day after the amount reaches 1 kg?
- (c) What is the expected number of months (counting the current month as a full one) that will elapse before the treasury has at least 2 kg of gold?
- 5. Let $X_1, ..., X_n$, be independent random variables. Assume that for each n the random variable X_n is distributed uniformly on [0, n].
 - (a) Fine a sequence a_n such that $(X_1^2 + \dots + X_n^2)/a_n \to 1$ in probability
 - (b) Find sequences b_n and c_n such that

$$\lim_{n\to\infty} P\left(\frac{X_1 + \dots + X_n - b_n}{c_n \sqrt{X_1^2 + \dots + X_n^2}} \le z\right)$$

exists and differs from zero and one for each $z \in \mathbb{R}$ and identify the limit for each z.

6. Let X_n , $n \geq 0$, be a process adapted to a filtration \mathcal{F}_n Prove that (X_n, \mathcal{F}_n) , $n \geq 0$, is a martingale if and only if for any bounded \mathcal{F}_n -stopping time τ it holds $\mathrm{E} X_\tau = \mathrm{E} X_0$.