DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION
 JANUARY, 2001

Statistics (Ph. D. Version)

Instructions to the Student
a. Answer all six questions. Each will be graded from 0 to 10 .
b. Use a different booklet for each question. Write the problem number and your code number (NOT YOUR NAME) on the outside cover.
c. Keep scratch work on separate pages in the same booklet.
d. If you use a "well known" theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.

1. Let $\mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\}$ be a family of distributions on a measurable space $(\mathcal{X}, \mathcal{A})$, and let $T:(\mathcal{X}, \mathcal{A}) \rightarrow(\mathcal{T}, \mathcal{B})$ be a statistic. Let $Q_{\theta}(B)=P_{\theta}\left(T^{-1} B\right)$, $B \in \mathcal{B}, \mathcal{Q}=\left\{Q_{\theta}, \theta \in \Theta\right\}$.

Prove that if T is sufficient for \mathcal{P} and $S:(\mathcal{T}, \mathcal{B}) \rightarrow(\mathcal{S}, \mathcal{C})$ is sufficient for \mathcal{Q} then S is sufficient for \mathcal{P}.
2. Let X_{1}, \ldots, X_{n} be a random sample from a population with pdf

$$
f(x-\theta)=\frac{1}{3 \sqrt{2 \pi}}(x-\theta)^{4} \exp \left\{-(x-\theta)^{2} / 2\right\}, \quad \theta \in R
$$

Compute the Fisher information on θ contained in the sample and find the efficiency of $\bar{X}=\left(X_{1}+\cdots+X_{n}\right) / n$ as an estimator for θ.
3. Two identical coins with $P(H)=1-P(T)=p$ are tossed independently n times. Let n_{0}, n_{1}, n_{2} denote the number of times when both coins show T, one shows T and the other shows H, both coins show H, respectively.

Find whether n_{2} / n is an admissible estimator for p^{2} assuming quadratic loss.
4. Let X_{1}, \ldots, X_{n} be of the form

$$
X_{i}=\theta a_{i}+\epsilon_{i}, \quad i=1, \ldots, n
$$

where a_{1}, \ldots, a_{n} are known constants, θ is a parameter to be estimated, and $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent random variables with mean 0 and variance $\operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{i}^{2}<\infty$.

Find the minimum variance linear unbiased estimator of θ and compute its variance.

Assuming $\epsilon_{1}, \epsilon_{2}, \ldots$ are normally distributed, study the consistency of the aforementioned estimator as $n \rightarrow \infty$.
5. Let the prior distribution of a parameter θ be $\operatorname{Beta}(\alpha, \beta)$ with pdf,

$$
\pi(\theta ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}, \quad \theta \in(0,1)
$$

where $\alpha>0, \beta>0$ and Γ is the gamma function. Given θ, the observations X_{1}, \ldots, X_{n} are independent binary random variables with

$$
P\left(X_{i}=1 \mid \theta\right)=1-P\left(X_{i}=0 \mid \theta\right)=\theta
$$

(i) Find the Bayes estimator of θ assuming quadratic loss. (ii) Are X_{1}, \ldots, X_{n} independent?
6. Let $\left(X_{1}^{\prime}, \ldots, X_{n_{1}}^{\prime}\right),\left(X_{1}^{\prime \prime}, \ldots, X_{n_{2}}^{\prime \prime}\right)$ be two independent random samples from normal populations $\mathrm{N}\left(\mu_{1}, \sigma^{2}\right)$ and $\mathrm{N}\left(\mu_{2}, \sigma^{2}\right)$, respectively, with unknown σ^{2}. Develop a t-test at significance level α for testing the null hypothesis $\mathrm{H}_{0}: \mu_{2}=2 \mu_{1}$.

