DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION JANUARY, 2003

Statistics (Ph. D. Version)

Instructions to the Student

- a. Answer all six questions. Each will be graded from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (**NOT YOUR NAME**) on the outside cover.
- c. Keep scratch work on separate pages in the same booklet.
- d. If you use a "well known" theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.

1. Suppose both $X_1, ..., X_m$ and $Y_1, ..., Y_n$ are random samples from the Exponential(1) distribution. With sample means $\overline{X}, \overline{Y}$, let

$$B_{m,n} = \frac{mX}{m\overline{X} + n\overline{Y}}$$

where $m/(m+n) \to \alpha$ as $m, n \to \infty$.

- a. What is the distribution of $B_{m,n}$?
- b. For $0 < \alpha < 1$, derive the asymptotic distribution as $m, n \to \infty$ of

$$\frac{\sqrt{m+n}\left(B_{m,n}-\frac{m}{m+n}\right)}{\sqrt{\alpha(1-\alpha)}}$$

Explain your derivation carefully.

2. Two independent and identically distributed measurements X_1, X_2 are made from a parametric density with parameter $\theta > 0$

$$f(x, \vartheta) = \begin{cases} \frac{1}{2} \vartheta e^{-\vartheta x} & if \quad x \ge 0\\ \\ \frac{1}{2} \vartheta^{-1} e^{x/\vartheta} & if \quad x < 0 \end{cases}$$

(a) Find the MLE of ϑ in terms of X_1, X_2 .

(b) Find the most powerful hypothesis test of H_0 : $\vartheta = 1$ versus the alternative H_1 : $\vartheta = 2$ of size 0.10, giving an equation to determine the rejection cutoff but not solving it explicitly. Justify that your test either is or is not UMP versus H_A : $\vartheta > 1$.

3. Let $X_1, ..., X_n$ be a random sample from a N(μ , 1) population, and let the prior pdf of μ be N(0, 1). Assuming quadratic loss, obtain the Bayes estimator and the corresponding minimum Bayes risk.

4. Let $X_1, ..., X_n$ be iid Poisson (λ) , and let \overline{X} and S^2 be the sample mean and sample variance, respectively.

- a. Show that \overline{X} is the best unbiased estimator of λ .
- b. Show that $E(S^2 \mid \overline{X}) = \overline{X}$.
- c. Use (b) to demonstrate explicitly that $\operatorname{Var}(S^2) > \operatorname{Var}(\overline{X})$.

5. Let $X_1, ..., X_n$ be a random sample from a pdf $f(x, \theta)$ where θ is k dimensional, and suppose $\hat{\theta}$ is the maximum likelihood estimator of θ .

a. Under appropriate regularity conditions, show that

$$\sqrt{n}(\hat{\theta} - \theta_0) \to \mathcal{N}(0, \mathcal{I}_1^{-1}(\theta_0))$$

where θ_0 is the true parameter and $I_1(\theta_0)$ is the Fisher information matrix evaluated at θ_0 .

b. Illustrate the result in terms of $X_1, ..., X_n$ from $Poisson(\lambda)$ where λ is a scalar parameter.

6. Let $X_1, ..., X_n$ denote the times to failure of n pieces of equipment, where $X_1, ..., X_n$ are iid Exponential(λ). Consider the hypothesis

$$\mathbf{H}_0: \ 1/\lambda = \mu \le \mu_0$$

a. Show that the test $\overline{X} \ge \mu_0 x(1-\alpha)/2n$, where $x(1-\alpha)$ is the $(1-\alpha)$ th quantile of the χ^2_{2n} distribution, is a size α test.

b. Derive the power in terms of the χ^2_{2n} distribution.

c. Approximate the power by appealing to the central limit theorem, and draw the graph of the approximate power function.