DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION JANUARY, 2004

Statistics (Ph. D. Version)

Instructions to the Student

- a. Answer all six questions. Each will be graded from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (**NOT YOUR NAME**) on the outside cover.
- c. Keep scratch work on separate pages in the same booklet.
- d. If you use a "well known" theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.

1. Let $\mathcal{P} = \{P_{\theta}\}$ be a family of distributions of a random element $X \in \mathcal{X} \subset \mathbb{R}^n$ parametrized by a discrete parameter $\theta \in \{\theta_0, \theta_1, \theta_2\}$. Assuming P_{θ} is given by a density $p(x; \theta)$ which is everywhere positive on \mathcal{X} , develop the minimal sufficient statistic for θ .

2. Let (x_1, x_2, \ldots, x_n) be a sample from a population X with density $e^{-(x-\theta)}, x \ge \theta$. Find the uniformly minimum variance unbiased estimator of the value of the parameter function $g(\theta) = P_{\theta}(1 < X < 2)$.

3. Given a parameter θ , X_1 , X_2 ,..., X_n are independent identically distributed random variables with $E(X_i|\theta) = \theta$, $\operatorname{var}(X_i|\theta) = \sigma^2$. The prior distribution of θ has known mean a and variance b^2 . The linear Bayesian estimator of θ , by definition, minimizes the overall risk within the class of estimators of the form $c_0 + \sum_{i=1}^n c_i X_i$ where the constant coefficients c_0, c_1, \ldots, c_n do not depend upon the data. Find the linear Bayesian estimator of θ with

respect to the squared-error loss function.

4. Let (x_1, x_2, \ldots, x_n) be a sample from a population with density

$$f(x;\theta) = \frac{1}{B(3,3)}(x-\theta)^2(1-x+\theta)^2, \ \theta \le x \le 1+\theta.$$

with θ as a parameter. Here $B(\alpha, \beta) = \int_0^1 x^{\alpha-1}(1-x)^{\beta-1}dx$ is the beta function, $B(\alpha, \beta) = (\alpha - 1)!(\beta - 1)!/(\alpha + \beta - 1)!$ for integer $\alpha > 0$, $\beta > 0$. Develop the method of moments estimator of θ and calculate its efficiency.

5. Let (x_1, x_2, \ldots, x_m) and (y_1, y_2, \ldots, y_n) be two independent samples from normal populations with parameters (μ_1, σ_1^2) and (μ_2, σ_2^2) , respectively. Assuming $\sigma_1^2 = 4\sigma^2$, $\sigma_2^2 = \sigma^2$, σ^2 unknown, develop a test of a constant level α for all $\sigma^2 > 0$ of the null hypothesis $H_0: \mu_1 = \mu_2$ versus the alternative $H_1: \mu_1 \neq \mu_2$.

6. Let $(x_1, y_1), \ldots, (x_n, y_n)$ be a sample from a bivariate normal population with mean vector (θ_1, θ_2) , regarded as a parameter and covariance matrix I, the identity matrix. For the maximum likelihood estimator \hat{g}_n of the value of the parameter function $g(\theta_1, \theta_2) = (\theta_1 - \theta_2)^2$, find the nondegenerate limiting distribution of $a_n(\hat{g}_n - g(\theta_1, \theta_2))$ as $n \to \infty$ for a properly chosen a_n .