DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION August, 2011

Statistics (M. A. Version)

Instructions to the Student

- a. Answer all six questions. Each will be graded from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (NOT YOUR NAME) on the outside cover
- c. Keep scratch work on separate pages in the same booklet.
- d. If you use a "well known" theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use
- 1. (i) Let $p(x, y; \theta)$, $\theta \in \Theta$ be a family of joint pdf's of random vectors X, Y with θ as a parameter.

Assuming $p(x, y; \theta) > 0$ for all x, y, θ , show that if Y is sufficient for θ and X and Y are independent when $\theta = \theta_0 \in \Theta$, then X and Y are independent for all $\theta \in \Theta$.

(ii) Let (X, Y) be a random vector having bivariate normal distribution with

$$E(X) = \theta_1, \ E(Y) = \theta_2, \ \operatorname{var}(X) = \operatorname{var}(Y) = 1, \ \operatorname{corr}(X, \ Y) = \rho$$

with (θ_1, θ_2) as a parameter (and ρ known).

Using the factorization theorem, show that if the parameter set is $\Theta = \{(\theta_1, \theta_2) : \theta_2 = \rho \theta_1\}$ then Y is sufficient for (θ_1, θ_2) .

- 2. Let (x_1, \ldots, x_n) and (y_1, \ldots, y_n) be independent samples from populations with pdf's $f(x-\theta_1)$ and $f(x-\theta_2)$, respectively, with $f(x)=e^{-x}$, $x \ge 0$ and θ_1 , θ_2 as parameters.
- (i) Find the MLE $\hat{\Delta}_n$ of $\Delta = \theta_1 \theta_2$ and calculate $E(\hat{\Delta}_n)$ and $var(\hat{\Delta}_n)$.

(ii) Show that the limiting distribution of $n(\hat{\Delta}_n - \Delta)$ as $n \to \infty$ is double exponential, i. e., given by the pdf $(1/2)\lambda \exp\{-\lambda |x|\}$, $x \in (-\infty, +\infty)$ for some $\lambda > 0$.

(Hint: Using the moment generating function may simplify the calculations.)

3. Let (x_1, \ldots, x_n) , (y_1, \ldots, y_n) , (z_1, \ldots, z_n) be independent samples from exponential populations with densities

$$f(x; \lambda_1), f(y; \lambda_2), f(z; \lambda_3),$$

respectively, where $f(u; \lambda) = (1/\lambda)e^{-u/\lambda}$, u > 0 and $\lambda_i > 0$, i = 1, 2, 3 are parameters.

Construct the LR (Likelihood Ratio) test of level α for testing

$$H_0: \lambda_1 = \lambda_2 = \lambda_3$$
 vs $H_1: \lambda_i \neq \lambda_j$ for some i, j

- (ii) Assuming $\lambda_2/\lambda_1=c_1$, $\lambda_3/\lambda_1=c_2$, show that the power function of the LR test depends only on c_1 , c_2
- 4. Given θ , (x_1, \dots, x_n) is a sample from a population with pdf $e^{(x-\theta)}$, $x \leq \theta$ (notice that the distribution is concentrated on $(-\infty, \theta)$).
- (i) Show that the family of pdf's

$$\pi(\theta; a, \lambda) = \lambda e^{-\lambda(\theta - a)}, \ \theta \ge a$$

with $\lambda > 0$, $a \in (-\infty, +\infty)$ as parameters is a conjugate family of prior pdf's

- (ii) Assuming the prior pdf $\pi(\theta)$ belonging to the conjugate family, find the Bayes estimator of θ for the quadratic loss function $L(\tilde{\theta}, \theta) = (\tilde{\theta} \theta)^2$.
- 5. Let (x_1, \ldots, x_m) and (y_1, \ldots, y_n) be independent samples of sizes m and n from populations with pdf's

$$f(x; \lambda_1) = (1/2)\lambda_1^3 x^2 e^{-\lambda_1 x}, \ x \ge 0$$

and

$$f(y; \lambda_2) = (1/6)\lambda_2^4 y^3 e^{-\lambda_2 y}, y \ge 0,$$

respectively, with λ_1 , λ_2 as parameters

- (i) Based on the sufficient statistics, construct a pivot for λ_1/λ_2 .
- (ii) Express the distribution of the pivot in terms of the F-distribution and construct a level $1 - \alpha$ confidence interval for λ_1/λ_2 .
- 6. Let (x_1, \dots, x_n) be a sample from a normal population $N(\mu, \sigma^2)$ with parameters μ, σ^2 . The $100(1-\alpha)$ -th population percentile $\eta_\alpha = \eta(\alpha)$ is a function of μ , σ^2 , $\eta_\alpha = \eta_\alpha(\mu, \sigma^2)$.

 (i) Find the MLE $\hat{\eta}_n(\alpha)$ of $\eta(\alpha)$ and calculate its variance.

 (ii) Find the limiting distribution of $\sqrt{n}(\hat{\eta}_n(\alpha) \eta(\alpha))$ as $n \to \infty$.