DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION August, 2011

Statistics (Ph. D. Version)

Instructions to the Student

- a Answer all six questions. Each will be graded from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (NOT YOUR NAME) on the outside cover
- c. Keep scratch work on separate pages in the same booklet.
- d. If you use a "well known" theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.
- 1. Let $\{p(x; \theta_1, \theta_2), (\theta_1, \theta_2) \in \Theta_1 \times \Theta_2\}$ be a family of pdf's on a measurable space $(\mathcal{X}, \mathcal{A})$ with (θ_1, θ_2) as a parameter. Assume that there exists $\theta_1^* \in \Theta_1$ such that $T_1 = T_1(X)$ is sufficient for the family $\{p(x; \theta_1^*, \theta_2), \theta_2 \in \Theta_2\}$. Assume also that for any $\tilde{\theta}_2 \in \Theta_2$, a statistic $T_2 = T_2(X)$ is sufficient for the family $\{p(x; \theta_1, \tilde{\theta}_2), \theta_1 \in \Theta_1\}$.
- (i) Write the versions of the factorization theorem expressing the above properties
- (ii) Assuming $p(x; \theta_1, \theta_2) > 0$ for all x, θ_1, θ_2 , show that the statistic $T = (T_1, T_2)$ is sufficient for (θ_1, θ_2) (i. e., for the family $\{p(x; \theta_1, \theta_2), (\theta_1, \theta_2) \in \Theta_1 \times \Theta_2\}$).
- 2. Let (x_1, \ldots, x_n) and (y_1, \ldots, y_n) be independent samples from populations with pdf's $f(x-\theta_1)$ and $f(x-\theta_2)$, respectively, with $f(x)=e^{-x}$, $x \ge 0$ and θ_1 , θ_2 as parameters.
- (i) Find the MLE $\hat{\Delta}_n$ of $\Delta = \theta_1 \theta_2$ and calculate $E(\hat{\Delta}_n)$ and $var(\hat{\Delta}_n)$.
- (ii) Find the normalizing constants $a_n > 0$ and the explicit formula of the pdf of the nondegenerate limiting distribution of $a_n(\hat{\Delta}_n \Delta)$ as $n \to \infty$. (**Hint:** Using the moment generating function may simplify the calculations.)

3. Let (x_1, \dots, x_n) , (y_1, \dots, y_n) , (z_1, \dots, z_n) be independent samples from exponential populations with densities

$$f(x; \lambda_1), f(y; \lambda_2), f(z; \lambda_3),$$

respectively, where $f(u; \lambda) = (1/\lambda)e^{-u/\lambda}$, u > 0 and $\lambda_i > 0$, i = 1, 2, 3 are parameters.

(i) Construct the LR (Likelihood Ratio) test of level α for testing

$$H_0: \lambda_1 = \lambda_2 = \lambda_3$$
 vs $H_1: \lambda_i \neq \lambda_j$ for some i, j .

- (ii) Show that the power function of the LR test depends only on $\lambda_2/\lambda_1, \lambda_3/\lambda_1$
- 4. Given θ , (x_1, \dots, x_n) is a sample from a population with pdf $e^{x-\theta}$, $x \leq \theta$ (notice that the distribution is concentrated on $(-\infty, \theta)$)
- (i) Construct the conjugate family of prior pdf's parameterized by a twodimensional parameter.
- (ii) Assuming the prior pdf $\pi(\theta)$ belongs to the conjugate family, find the Bayes estimator of θ for the quadratic loss function $L(\tilde{\theta}, \theta) = (\tilde{\theta} \theta)^2$.
- 5. Let (x_1, \ldots, x_m) and (y_1, \ldots, y_n) be independent samples of sizes m and n from populations with pdf's

$$f(x; \lambda_1) = (1/2)\lambda_1^3 x^2 e^{-\lambda_1 x}, \ x \ge 0$$

and

$$f(y; \lambda_2) = (1/6)\lambda_2^4 y^3 e^{-\lambda_2 y}, y \ge 0,$$

respectively, with λ_1 , λ_2 as parameters.

- (i) Based on the sufficient statistics, construct a pivot for λ_1/λ_2 .
- (ii) Express the distribution of the pivot in terms of the F-distribution and construct a level 1α confidence interval for λ_1/λ_2 .
- **6.** Let (x_1, \dots, x_n) be a sample from a normal population $N(\mu, \sigma^2)$ with parameters μ, σ^2 . The $100(1-\alpha)$ -th population percentile $\eta_{\alpha} = \eta(\alpha)$ is a function of μ , σ^2 , $\eta_{\alpha} = \eta_{\alpha}(\mu, \sigma^2)$
- (i) Find the MLE $\hat{\eta}_n(\alpha)$ of $\eta(\alpha)$ and show that it is biased
- (ii) Find the limiting distribution of $\sqrt{n}(\hat{\eta}_n(\alpha) \eta(\alpha))$ as $n \to \infty$