DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION AUGUST, 2003

Applied Statistics (Ph.D. Version)

Instructions to the Student

- a. Answer all six questions. Each will be graded from 0 to 10.
- b. Use a different booklet for each question. Write the problem number and your code number (**NOT YOUR NAME**) on the outside cover.
- c. Keep scratch work on separate pages in the same booklet.
- d. If you use a "well known" theorem in your solution to any problem, it is your responsibility to make clear which theorem you are using and to justify its use.
- e. You may use calculators as needed.

1. Engineers A and B collected replicated data of the form (x_i, Y_{ij}) , $i = 1, \ldots, k, j = 1, \ldots, m$. A plotted \overline{Y}_i vs. x_i and claimed that there is a nonlinear relationship between the response variable Y and the control variable x. B used ordinary least squares to fit a linear model $Y = \beta_0 + \beta_1 x + e$ and claimed that a straight line model was adequate to fit the data because he found $R^2 > 0.9$.

- (a) Assuming $Y_{ij} = m(x_i) + e_{ij}$ for some function m and that the e_{ij} are i.i.d. $N(0, \sigma^2)$, how would you settle the dispute between A and B? Are either of them using correct reasoning to support their claims?
- (b) Suppose that there had been no replication (m = 1). What guidance, if any, could you provide to A and B?

2. Let $Y_{ij} = \mu + a_i + e_{ij}$, i = 1, ..., I, j = 1, ..., J, be data from a balanced one-way random effects ANOVA, where the a_i are i.i.d. $N(0, \sigma_a^2)$ and the e_{ij} are i.i.d. $N(0, \sigma_e^2)$.

In terms of sample averages and statistics calculated in the usual ANOVA table, find $1 - \alpha$ confidence intervals for μ , σ_e^2 and σ_a^2/σ_e^2 .

3. A population \mathcal{U} consists of N clusters with M_i elements in the *i*th cluster. Altogether the population contains $K = \sum_{i=1}^{N} M_i$ elements. A simple random sample \mathcal{S} of n clusters is selected, and a variable y is measured on each element of the selected clusters, yielding data $\{y_{ij}, i \in \mathcal{S}, j = 1, \ldots, M_i\}$. Consider the following estimators of the population total $t_y = \sum_{i \in \mathcal{U}} \sum_{j=1}^{M_i} y_{ij} = \sum_{i \in \mathcal{U}} t_i$, where t_i is the *i*th cluster total:

(i) the simple expansion estimator

$$\hat{t}_1 = \frac{N}{n} \sum_{i \in \mathcal{S}} t_i,$$

(ii) the ratio to size estimator

$$\hat{t}_2 = K \frac{\sum_{i \in \mathcal{S}} t_i}{\sum_{i \in \mathcal{S}} M_i}.$$

- (a) Is either of these two estimators unbiased? Explain your answer.
- (b) Give expressions for the variances of these estimators, assuming both n and N are large. Your answer should be exact if possible, otherwise approximate. When would one expect \hat{t}_1 to be less accurate than \hat{t}_2 ?

4. Random variables Y_{ij} , $1 \le i < j \le 3$, are observed, where the Y_{ij} are independent $N(\beta_i - \beta_j, \sigma^2)$. The parameters $\boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3)^T$ and σ^2 are unknown. The parameters β_i can be regarded as effects of a factor B.

- (a) Assuming that all three combinations of (i, j) are observed, write a linear model of the form $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ to describe the data, where $\mathbf{Y} = (Y_{12}, Y_{13}, Y_{23})^T$. Write the **X** matrix explicitly.
- (b) Are any of the individual parameters β_i estimable? Is an unbiased estimator of σ^2 available? Prove your answer.

5. Consider the quadratic regression model

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + e$$

where, as usual, the e's are i.i.d. $N(0, \sigma^2)$ random errors.

- (a) If the x_{ij} are all ± 1 , verify that the parameters β_0 and β_{jj} , j = 1, 2, are not estimable.
- (b) Suppose that *n* observations are available for each combination of *x* values with $x_1 = \pm 1$, $x_2 = \pm 1$ and *m* additional observations are available at $(x_1, x_2) = (0, 0)$. Show that β_0 and $\beta_0 + \beta_{11} + \beta_{22}$ are estimable, but that β_{11} and β_{22} are not individually estimable.
- (c) Propose a test of H_0 : $\beta_{11} = \beta_{22} = 0$ and give the distribution of your test statistic under H_0 .

6. A simple random sample of households S is selected from a very large population. The data will be used to estimate the proportion $p_{\mathcal{U}}$ of households with a certain attribute. It is believed that $p_{\mathcal{U}}$ is between 30% and 70%. What sample sizes are needed to meet the following requirements for precision?

- (a) The population proportion $p_{\mathcal{U}}$ is to be estimated with a standard error of no more than 3%.
- (b) The proportions $p_{\mathcal{U}_k}$ in each of the three income classes—under \$25,000, \$25,000 to \$50,000, and over \$50,000 (k = 1, 2, 3, respectively)—are each to be estimated with a standard error of no more than 3%.
- (c) The differences of proportions $(p_{\mathcal{U}_j} p_{\mathcal{U}_k})$ for each pair of classes in (b) are to be estimated with a standard error of no more than 3%.

Income statistics indicate that the proportions in the three classes above are 50%, 40% and 10%.

You should provide separate answers for each of parts (a), (b), (c). The finite population correction may be neglected.