DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January 2011
LOGIC (Ph.D./M.A. version)

1. (a) Let T be any L-theory and suppose that $\left\{\varphi_{n}(x): n \in \omega\right\}$ are L-formulas such that $T \models \forall x\left(\varphi_{n}(x) \rightarrow \varphi_{n+1}(x)\right)$ for all $n \in \omega$. Suppose further that every element of every model of T realizes some $\varphi_{n "}$ Prove that $T \models \forall x \varphi_{n}(x)$ for some $n \in \omega$.
(b) Let \mathfrak{A} be an L-structure, let $a \in A$, and assume that a satisfies some complete L-formula in \mathfrak{A} Let $L^{\prime}=L \cup\{c\}$, and let \mathfrak{A}^{\prime} be the expansion of \mathfrak{A} to an L^{\prime}-structure in which $c^{2^{\prime}}=a_{\text {. Suppose }}$. Sup that $b \in A$ and that b satisfies a complete L^{\prime}-formula in \mathfrak{A}^{\prime}. Prove that the pair $a b$ satisfies a complete L-formula in \mathfrak{A}
2. A theory T is called model complete if every embedding of models of T is an elementary embedding.
(a) Suppose that $L=\{E\}$ and T is the L-theory asserting that E is an equivalence relation with infinitely many classes, and each class is infinite. Prove that T is model complete.
(b) Prove that if T is model complete, then for every L-formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$, there is an existential L-formula $\psi\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
T \models \forall \bar{x}(\varphi(\bar{x}) \leftrightarrow \psi(\bar{x}))
$$

3. (a) Suppose $L=\{U, \leq\}$, where U is a unary predicate and \leq is binary. Let \mathfrak{A} be the $L_{\text {-structure with universe } \mathbb{R} \text { (the real num- }}$ bers), where $U^{\mathfrak{A}}=\mathbb{Q}$ (the rationals) and $\leq^{\mathfrak{A}}$ is the usual ordering on \mathbb{R}. Find, with proof, all countable models of $T h(\mathfrak{A})$, up to isomorphism.
(b) Prove that if T is ω-categorical and \mathfrak{A} is the infinite, countable model, then there is $\mathfrak{B} \preceq \mathfrak{A}$ with $\mathfrak{B} \neq \mathfrak{A}$
4. (a) Prove that $T h(\mathfrak{N})$, where $\mathfrak{N}=(\omega,+, \cdots, 0, s)$, is not model complete (see Problem \#2).
(b) Assume that $P A+\operatorname{Con}(P A)$ is consistent. Use Gödel's Second Incompleteness Theorem to conclude that $P A+\neg \operatorname{Con}(P A)$ is consistent
5. (a) Prove that there is an integer m so that $W_{m}=\{m\}$.
(b) Let $Z=\left\{e: W_{e} \neq \emptyset\right\}$. Prove that Z is a many-one complete, recursively enumerable subset of ω.
6. (a) Determine (with proof) whether or not $\mathbf{T O T}=\{e:\{e\}$ is total $\}$ is Turing equivalent to $\mathbf{F I N}=\left\{e: W_{e}\right.$ is finite $\}$,
(b) Demonstrate that $\left\{e: W_{e}\right.$ is recursive $\}$ is an arithmetic subset of ω

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August, 2010
LOGIC (Ph.D./M.A. version)

1. (a) Suppose T is a theory in a language with only finitely many non-logical symbols. Prove that if T has infinitely many nonisomorphic models, then T has an infinite model.
(b) Suppose $L \subseteq L^{\prime}$ are languages, \mathfrak{A} is an L-structure, and T^{\prime} is a consistent L^{\prime}-theory. Additionally, assume that there is no model of T^{\prime} whose reduct to L is elementarily equivalent to \mathfrak{A}. Prove that there is an L-sentence θ such that $\mathfrak{A} \models \theta$, but $T^{\prime} \models \neg \theta$.
2. (a) Let $L=\{E\}$, where E is a binary relation, and let T be the L theory asserting that E is an equivalence relation with infinitely many classes, and that each class is infinite. Prove that T is model complete, i.e., for all models $\mathfrak{A}, \mathfrak{B} \models T, \mathfrak{A} \subseteq \mathfrak{B}$ implies $\mathfrak{A} \preceq \mathfrak{B}$.
(b) Let \mathfrak{A} be any proper elementary extension of $\mathfrak{N}=(\omega,+, \cdot,<)$. An initial substructure is a substructure (not necessarily elementary) $\mathfrak{B} \subseteq \mathfrak{A}$ in which the set B is a <-initial segment of A. Prove that for any $a \in A$ there is an initial substructure $\mathfrak{B} \subseteq \mathfrak{A}$ with $a \in B$, but $B \neq A$. [Possible hint: Recall that there is an L-formula $\varphi(x, y, z)$ such that $k^{\ell}=m$ if and only if $\mathfrak{N} \models \varphi(\bar{k}, \bar{\ell}, \bar{m})$ for all $k, \ell, m \in \omega$.]
3. Suppose that T is a complete theory in a countable language.
(a) Prove directly from the definitions that if $\mathfrak{A} \models T$ is countable and atomic, then it embeds elementarily into every model of T. It is not sufficient to simply quote theorems from class.
(b) Suppose that some atomic $\mathfrak{A} \models T$ has a proper, elementary substructure. Prove that T has an uncountable, atomic model.
4. (a) Assume that $R \subseteq \omega^{2}$ is recursively enumerable and that the sets $\left\{R_{k}: k \in \omega\right\}$ are all infinite and are pairwise disjoint. Prove that there is a recursive set $C \subseteq \omega$ that intersects each R_{k} in exactly one point.
(b) Prove that every decidable theory in a language with finitely many non-logical symbols has a complete, decidable extension.
5. Let $F m_{x}$ denote the set of formulas in the language $L=\{+, \cdot,<, s, 0\}$ whose free variables is precisely $\{x\}$. For each $\varphi(x) \in F m_{x}$, let $d \varphi$ denote the sentence $\exists x(x=\ulcorner\varphi\urcorner \wedge \varphi(x))$. Let $f: \omega \rightarrow \omega$ be the (recursive) function

$$
f(n)= \begin{cases}\ulcorner d \varphi\urcorner & \text { if } n=\ulcorner\varphi\urcorner \text { for some } \varphi \in F m_{x} \\ 0 & \text { otherwise }\end{cases}
$$

and let T be any theory in which f is represented.
(a) Prove that for every formula $\theta(x) \in F m_{x}$ there is a sentence ψ such that $T \vdash \psi \leftrightarrow \theta(\ulcorner\psi\urcorner)$.
(b) Prove that if T is a consistent theory in which every recursive function is represented, then T is undecidable.
6. (a) Prove that $\left\{k \in \omega: \varphi_{2 k}(3 k) \uparrow\right\}$ is Π_{1} but not Δ_{1}.
(b) Prove that INF is many-one reducible to ZERO, where INF = $\left\{e \in \omega: W_{e}\right.$ is infinite $\}$ and ZERO $=\left\{e \in \omega: \forall n \varphi_{e}(n)=0\right\}$.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January 2010
LOGIC (Ph D /MA. version)

1. (a) Prove that the class of cyclic groups is not an elementary class. (Recall that a group G is cyclic iff there is some $g \in G$ such that $G=\left\{g^{n}: n \in \mathbb{Z}\right\}$.)
(b) Prove that every countable linear order embeds isomorphically into (\mathbb{Q}, \leq).
2. (a) Let $L_{1}=\{U\}$, where U is a unary predicate symbol. Prove that for any L_{1}-sentence θ, if θ is true in every finite L_{1}-structure, then θ is valid
(b) Let $L_{2}=\{R\}$, where R is a binary predicate symbol. Find (with proof) an L_{2}-sentence θ such that θ holds in every finite L_{2}-structure, but θ is not valid.
3. (a) Prove that no complete theory T extending Peano's Axioms can have a countable, saturated model.
(b) Let T be a complete theory in a countable language, and let $\Gamma(x)$, $\Phi(x)$ be 1-types such that (1) there is a model of T omitting Γ and (2) every model of T that omits Γ realizes Φ. Prove that Φ is realized in every model of T.
4. (a) Prove that there is a model \mathfrak{A} of Peano's Axioms and a formula $\theta(x)$ such that $\mathfrak{A} \models \exists x \theta(x)$, yet $\mathfrak{A} \models \neg \theta(\bar{n})$ for every $n \in \omega_{\text {. }}$
(b) Suppose L has only finitely many nonlogical symbols, and T is a finitely axiomatizable L-theory such that for any L-sentence θ, if θ is not true in every model of T, then θ is false in some finite model of T. Prove that T is decidable.
5. (a) Prove that there is no total recursive $f: \omega \rightarrow \omega$ such that for all $e \in \omega$, if W_{e} is finite, then $W_{e} \subseteq\{0,1, \ldots, f(e)\}$.
(b) Construct an re subset $A \subseteq \omega$ such that $\omega \backslash A$ is infinite, but $A \cap B$ is nonempty for every infinite, re set B.
6. (a) Give an examaple (with justifications) of two sets $A, B \subseteq \omega$ such that A is Turing reducible to B, but A is not many-one reducible to B.
(b) Exhibit (with proof) two disjoint, ree sets A and B that are recursively inseparable, i.e., there is no recursive C such that $A \subseteq C$, but $B \cap C=\emptyset$.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND
 GRADUATE WRITTEN EXAM

August 2009
LOGIC (Ph.D /M..A. version)

1. Suppose that $L \subseteq L^{\prime}$ are languages, \mathfrak{A} is an L-structure, and T^{\prime} is an L^{\prime}-theory such that $T^{\prime} \cup T h_{L}(\mathfrak{A})$ is consistent.
(a) Prove that there is an L^{\prime}-structure $\mathfrak{B}^{\prime} \models T^{\prime}$ such that the L-reduct, $\mathfrak{B}=\left.\mathfrak{B}^{\prime}\right|_{L}$ elementarily extends \mathfrak{A}
(b) Prove that there is a model of T^{\prime} realizing every 1-type $\Gamma(x)$ in the language L consistent with $T h(\mathfrak{A})$.
2. Let $D(x, y)$ denote the divisibility relation on ω, i.e., $D(n, m)$ if and only if n divides m. Let $\mathfrak{A}=(\omega, D)$
(a) Prove that the set of primes is definable in \mathfrak{A}
(b) Prove that \mathfrak{A} has a nontrivial automorphism, i.e., an isomorphism $f: \mathfrak{A} \rightarrow \mathfrak{A}$ such that $f(n) \neq n$ for at least one $n \in \omega$.
3. (a) Prove that if \mathfrak{A} is an infinite, countable, saturated model then there is a countable, saturated $\mathfrak{B} \preceq \mathfrak{A}$ with $\mathfrak{B} \neq \mathfrak{A}$
(b) Let $\mathfrak{A}_{0} \preceq \mathfrak{B}_{0} \preceq \mathfrak{A}_{1} \preceq \mathfrak{B}_{1} \preceq \mathfrak{A}_{2} \preceq$. be an elementary chain of models where each \mathfrak{A}_{n} is countable and saturated, and each \mathfrak{B}_{n} is not saturated. Prove that $\bigcup_{n \in \omega} \mathfrak{B}_{n}$ is countable and saturated.
4. (a) Let $\mathfrak{N}=(\omega,+, \cdots, 0,1)$ denote the standard model of arithmetic, and let PA denote Peano's axioms. Prove that there is a countable $\mathfrak{A} \models P A$ such that $\mathfrak{N} \subseteq \mathfrak{A}$, but $\mathfrak{N} \npreceq \mathfrak{A}$
(b) Given a binary function $g: \omega \times \omega \rightarrow \omega$, let g^{*} be the partial function defined by

$$
g^{*}(x)= \begin{cases}y & \text { if, for some } n, g(m, x)=y \text { for all } m \geq n \\ \uparrow & \text { otherwise }\end{cases}
$$

Construct a (total) recursive $g: \omega \times \omega \rightarrow \omega$ such that the domain of g^{*} is a non-recursively enumerable set, e.g., \bar{K}

5 Let $E(x, y)=x^{y}$ denote the exponential function.
(a) Prove that the graph of multiplication is definable in the structure (ω, E)
(b) Prove that the structure (ω, E) is strongly undecidable.
6. For $X \subseteq \omega$, let $S_{X}=\left\{e \in \omega: W_{e}=X\right\}$
(a) Prove that S_{X} is Π_{3} for every recursive set X.
(b) Find (with proof) a recursive $X \subseteq \omega$ such that S_{X} is not $\Pi_{3^{-}}$ complete.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND
 GRADUATE WRITTEN EXAM

January 2009
LOGIC (Ph.D./M.A. version)

1. (a) Let \mathfrak{A} and \mathfrak{B} be elementarily equivalent structures in the same language L. Prove that there is an L-structure \mathfrak{C} and elementary embeddings $f: \mathfrak{A} \rightarrow \mathfrak{C}$ and $g: \mathfrak{B} \rightarrow \mathfrak{C}$.
(b) Let $L=\{<, U\}$, where U is unary and $<$ is binary. Let \mathfrak{A} be any L-structure with universe the rationals \mathbb{Q}, where $<^{\mathfrak{k}}$ is interpreted as the usual ordering on \mathbb{Q} and $U^{\mathfrak{Q}}$ is any dense, codense subset, e.g.,

$$
U^{\mathfrak{A}}=\left\{\frac{n}{2^{k}}: n, k \text { are integers }\right\}
$$

Prove that $T h(\mathfrak{A})$ is ω-categorical.
2. (a) Let $L=\{+, \cdot, 0,1\}$ and let $\mathfrak{N}=(\omega,+, \cdot, 0,1)$ be the standard model of arithmetic. Let $\varphi(x)$ be any L-formula defining the set of prime numbers in ω. Prove that if \mathfrak{A} is an elementary extension of \mathfrak{N} and $\mathfrak{A} \neq \mathfrak{N}$, then there is $a \in A \backslash \omega$ such that $\mathfrak{A} \models \varphi(a)$.
(b) Prove that every model (even the uncountable ones) of an ω categorical theory in a countable language is atomic.
3. Let T be a complete theory in a countable language.
(a) Prove that if \mathfrak{A} is a countably universal model of T, then \mathfrak{A} has an ω-saturated elementary substructure.
(b) Prove that if \mathfrak{A} is an infinite, countable, ω-saturated model of T, then \mathfrak{A} has a nontrivial automorphism, i.e., an isomorphism $f: \mathfrak{A} \rightarrow \mathfrak{A}$ such that $f(a) \neq a$ for at least one $a \in A$.
4. Let $L=\{f\}$, where f is a binary function symbol, and let Valid $_{L}$ denote the set of valid sentences in this language.
(a) Prove that Valid $_{L}$ is not essentially undecidable.
(b) Find an L-sentence $\sigma \notin$ Valid $_{L}$, yet σ holds in every finite L structure.
5. (a) Suppose that every recursively enumerable set A is many-one reducible to a fixed set $B \subseteq \omega$. Prove that B contains an infinite, recursively enumerable subset.
(b) Let $A=\left\{e \in \omega: W_{e}\right.$ is finite $\}$ and $B=\left\{e \in \omega: W_{e}\right.$ is infinite $\}$. Prove that A is Turing reducible to B, but not many-one reducible to B.
6. (a) Prove or disprove: If a binary relation R is r.e. and $\left|R_{k}\right| \leq 2$ for each k, then R is recursive.
(b) Let $A \subseteq \omega$ be weakly represented, but not represented by a formula $\varphi(x)$ with respect to Q. Prove that there is a consistent, recursively axiomatizable theory $T \supseteq Q$ such that A is not weakly represented by $\varphi(x)$ with respect to T.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND gRaduate written exam

August 2008
LOGIC (Ph.D./M.A. version)

1. (a) Prove that if $\mathfrak{A} \preceq \mathfrak{B}$ and A is finite, then $\mathfrak{A}=\mathfrak{B}$.
(b) Suppose that \mathfrak{A} and \mathfrak{B} are structures in the same language L that satisfy the same universal sentences. Prove that there is an L-structure \mathfrak{C} into which both \mathfrak{A} and \mathfrak{B} embed isomorphically.
2. (a) Find (with proof) all automorphisms of the structure $\mathfrak{A}=(\mathbb{Z},+)$.
(b) Recall that a countable $\mathfrak{A} \vDash T$ is ω-homogeneous iff for all $n \in \omega$ and all $a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n} \in A$ there is an automorphism h of \mathfrak{A} such that $h\left(a_{i}\right)=b_{i}$ for all $0 \leq i \leq n$ whenever $\operatorname{tp}_{\mathfrak{A}}\left(a_{0}, \ldots, a_{n}\right)=$ $t p_{\mathfrak{A}}\left(b_{0}, \ldots, b_{n}\right)$.
Prove that if \mathfrak{A} and \mathfrak{B} are both countable, ω-homogeneous models of T, \mathfrak{A} embeds elementarily into \mathfrak{B}, and \mathfrak{B} embeds elementarily into \mathfrak{A}, then $\mathfrak{A} \cong \mathfrak{B}$.
3. Let T be a complete theory in a countable language.
(a) Prove that if T does not have a prime model, then T has uncountably many nonisomorphic countable models.
(b) Let X be a countable set of 1-types such that for every finite $F \subseteq X$ there is a model $\mathfrak{A}_{F} \vDash T$ omitting every $\Phi \in F$. Prove that there is a model $\mathfrak{B} \models T$ omitting every $\Phi \in X$.
4. (a) Suppose that T is a recursively axiomatizable theory in a finite language L that has no infinite models. Prove that T is decidable.
(b) Let $L=\{+, \cdot, 0, s,<\}$ and let Valid $_{L}$ denote the set of valid $L-$ sentences. Prove that Valid $_{L}$ is undecidable, but not essentially undecidable.
5. (a) Let T be any consistent, recursively axiomatizable extension of Robinson's Q and let $T h m_{T}=\{\ulcorner\sigma\urcorner: T \vdash \sigma\}$. Prove that $T h m_{T}$ is weakly represented in Q, but is not represented in Q.
(b) Let $P A$ denote Peano's Axioms. Use Gödel's $2^{\text {nd }}$ Incompleteness Theorem to prove that if $P A$ is consistent, then

$$
P A \cup\{\operatorname{Con}(P A+\neg \operatorname{Con}(P A))\}
$$

has a model.
6. Let $K=\{e \in \omega:\{e\}(e) \downarrow\}$ and Even $=\left\{e \in \omega: W_{e}=\{2 n: n \in \omega\}\right\}$.
(a) Prove that there is an infinite, r.e. B such that K and B are recursively inseparable.
(b) Prove that Even $\leq_{T} \mathbf{0}^{\prime \prime}$.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January 2008
LOGIC (Ph.D./M.A. version)

1. (a) Let T be any theory in a language L that has an infinite model. Prove that T has a model \mathfrak{A} with an element $a \in A$ such that $a \neq c^{\mathfrak{a}}$ for every constant symbol $c \in L$.
(b) Suppose that \mathfrak{A} is a saturated model of $T h(\mathfrak{A})$, and that a complete 1 -type $\Phi(x)$ is realized by only finitely many elements of \mathfrak{A}. Prove that there is a formula $\varphi(x) \in \Phi(x)$ such that φ is realized by only finitely many elements of \mathfrak{A}.
2. (a) Let $L^{\mathrm{nl}}=\{+, \cdot, 0,1, \leq\}$. Prove that any proper elementary extension $\mathfrak{B} \succ(\mathbb{R},+, \cdot, 0,1, \leq)$ contains an element $b \in B$ such that $\mathfrak{B}_{B} \models \bar{b}>\bar{r}$ for every $r \in \mathbb{R}$.
(b) Recall that a countable model $\mathfrak{A l}$ is ω-homogeneous iff for all $n \in \omega$ and all $a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n} \in A$ there is an automorphism h of \mathfrak{A} such that $h\left(a_{i}\right)=b_{i}$ for all $0 \leq i \leq n$ whenever $\operatorname{tp}_{\mathfrak{A}}\left(a_{0}, \ldots, a_{n}\right)=$ $t p_{\mathfrak{A}}\left(b_{0}, \ldots, b_{n}\right)$.
Prove that every countable model in a countable language has a countable, ω-homogeneous elementary extension.
3. Let $L^{\mathrm{nl}}=\{E\}$, where E is a binary relation symbol. Let T be the theory asserting that E is an equivalence relation with exactly two classes, both of which are infinite.
(a) Prove that T is a complete L-theory.
(b) Prove that if \mathfrak{A} and \mathfrak{B} are models of T and $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$.
4. (a) Suppose that T is a recursively axiomatizable theory with a model $\mathfrak{A} \vDash T$ that embeds elementarily into every model of T. Prove that T is decidable.
(b) Assume that $A \subseteq \omega$ is recursive, $R \subseteq \omega \times \omega$ is r.e., and that $\bigcup_{k \in \omega} R_{k}=A$. Prove that there is a recursive $S \subseteq R$ such that $\bigcup_{k \in \omega} S_{k}=A$.
5. Let $\mathcal{F}=\{$ all functions $f: \omega \rightarrow \omega$ such that $f(n+1)=n f(n)$ for all but finitely many $n \in \omega\}$.
(a) Prove that every $f \in \mathcal{F}$ is recursive.
(b) Prove that there is a recursive function $g: \omega \rightarrow \omega$ such that for every $f \in \mathcal{F}$ there is an $N \in \omega$ such that $g(n) \geq f(n)$ for every $n \geq N$.
6. (a) Let T be a consistent, recursively axiomatizable theory containing the axioms for Q. Prove that for every formula $\varphi(x)$ of the language for Q there is a sentence σ such that $T \vdash \sigma \leftrightarrow \varphi(\overline{\ulcorner\sigma\urcorner})$.
(b) Recall that $K=\{e:\{e\}(e) \downarrow\}$ and $\bar{K}=\omega \backslash K$. Prove that K is not many-one reducible to \bar{K}.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August 2007
LOGIC (Ph.D./M.A. version)

1. a) Prove or disprove: $(\mathbb{Z},<)$ has a proper elementary substructure.
b) Let $L^{n l}=\{E\}$ where E is a binary relation symbol. Let \mathfrak{A} be the countable L-structure in which $E^{\mathfrak{A}}$ is an equivalence relation such that $E^{\mathfrak{A}}$ has no infinite equivalence classes and for every $n \geq 1$ there is exactly one $E^{\mathfrak{A}}$-class with exactly n elements. Prove that $T h(\mathfrak{A})$ has exactly one countable model with infinitely many infinite equivalence classes.
2. a) Let T be a theory in a language L. Assume that whenever θ_{1} and θ_{2} are universal sentences of L and $T \models\left(\theta_{1} \vee \theta_{2}\right)$ then either $T \models \theta_{1}$ or $T \models \theta_{2}$. Prove that for any $\mathfrak{A}, \mathfrak{B} \models T$ there is some $\mathfrak{C} \models T$ such that both \mathfrak{A} and \mathfrak{B} can be embedded in \mathfrak{C}. [Recall that θ is universal iff it has the form $\forall x_{1} \ldots \forall x_{n} \varphi$ where φ is an open formula]
b) Let T be an ω-categorical theory in a countable language L. Prove that every uncountable model of T is ω-saturated.
3. a) Let T be a complete theory in a countable language L. Let \mathfrak{A} be a countable ω_{1}-universal model of T. Prove that there is some ω saturated \mathfrak{B} such that $\mathfrak{B} \prec \mathfrak{A}$.
b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L-type. Assume that Φ is realized by at most two elements in every model of T. Prove that there is some formula $\varphi(x)$ of L such that for every $\mathfrak{A} \models T, \Phi^{\mathfrak{A}}=\varphi^{\mathfrak{A}}$.
4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. but not recursive and that $R_{k} \cap R_{l}=\emptyset$ for all $k \neq l$. Prove that $\left(\omega \backslash \bigcup_{k \in \omega} R_{k}\right)$ is infinite.
b) Prove that $\{\ulcorner\sigma\urcorner: \sigma$ is an open sentence and $\mathfrak{N} \vDash \sigma\}$ is recursive.
5. a) Let $A, B \subseteq \omega$ be recursively inseparable r.e. sets. Assume that $A \leq_{m} C$ for some $C \subseteq \omega$. Prove that ($\omega \backslash C$) contains an infinite r.e. subset.
b) Let f, g be total recursive functions of one argument. Let
$I_{f}=\{e \in \omega:\{e\}=f\}$ and $I_{g}=\{e \in \omega:\{e\}=g\}$.
Prove that $I_{f} \equiv_{m} I_{g}$.
6. a) Let $R \subseteq \omega \times \omega$ be r.e. Let $A=\left\{k \in \omega: R_{k}\right.$ is cofinite $\}$. Prove that A is arithmetic.
b) Prove that there are infinitely many $e \in \omega$ such that $\{e\}(2 e)=3 e$.

DEPARTMENT OF MATHEMATICS UNIVERSTTY OF MARYZAND GRADUATE WRITTEN EXAM

January 2007
LOGIC (Ph.D./M.A. version)

1. Let L be a countable langriage and let $\left\{T_{n}\right\}_{n \in \omega}$ be L-theories such that $T_{n} \subseteq T_{n+1}$ for all $n \in \omega$. Let $T^{*}=\bigcup_{n \in \omega} T_{n}$ and let $\Phi(x)$ be an L-type: Prove or disprove (with a counterexample) each of the following.
a) If each T_{n} has a model realizing Φ then T^{*} has a model realizing Φ.
b) If each T_{n} has a model omitting Φ then T^{*} has a model omitting Φ.
2. a) Let T be a theory in a language L and let \mathfrak{B} be an L-striucture. Assume that whenever θ is a universal sentence of L and $T \models \theta$ then $\mathfrak{B} \models \theta$. Prove that \mathfrak{B} can be embedded in some model of T. [Recall that θ is universal ff it has the form $\forall x_{1} \ldots \forall x_{n} \varphi$ where φ is an open formula]
b) Let T be a complete theory of L. Assume that T has some model which realizes just finitely many complete types in one variable. Prove that every model of T realizes just finitely many complete types in one variable.
3. a) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L-type. Assume that any two countable models of T omitting $\Phi .$. are isomorphic. Prove that every countable model of T omitting Φ is prime: [Warning: you are not given that T has a prime model]
b) Recall that a countable model \mathfrak{A} is ω-homogeaeous iff for all $n \in \omega$ and all $a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n} \in A$ there is an automorphism h of $\mathfrak{A L}$ such that $h\left(a_{i}\right)=b_{i}$ for all $0 \leq i \leq n$ whenever $t p_{\mathfrak{2}}\left(a_{0}, \ldots, a_{n}\right)=t p_{\mathfrak{A}}\left(b_{0}^{\prime}, \ldots, b_{n}\right)$.

Let T be a complete theory of a countable language L, and assume that $\mathfrak{A} \models T$ is countable, ω-homogeneous, and ω_{1}-universal. Prove that \mathfrak{A} is ω-saturated.
4. a) Let $f: \omega \rightarrow \omega$ be a (total) function. Assume that there is some finite $X \subseteq \omega$ such that for all $n \in(\omega \backslash X)$ we have $f(n+1)=f(n)+1$. Prove or disprove (with a counterexample): f is recursive.
b) Let T be a recursively axiomatizable theory containing the axioms for Q such that $\mathfrak{N} \models T$. Prove that there is some formula $\varphi(x)$ (of the language for Q) such that $T \vdash \varphi(\bar{n})$ for all $n \in \omega$ but $T \nvdash \forall x \varphi(x)$.
5. a) Let $A \subseteq \omega$ be infinite and r.e. Prove that there are infinite recursive sets $B_{0}, B_{1} \subseteq A$ such that $\left(B_{0} \cap B_{1}\right)=\emptyset$.
b) Define sets $A, B \subseteq \omega$ such that A is r.e. in B but $(\omega \backslash A)$ is not r.e. in $(\omega \backslash B)$. [You must prove the sets you define have these properties]
6. a) Let $I=\left\{e:\left|W_{e}\right|=1\right\}$. Prove that $A \leq_{m} I$ for every r.e. $A \subseteq \omega$.
b) Prove that there is some $n \in \omega$ such that W_{n} is the set whose only element is n.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August 2006
/LOGIC (Ph.D./M.A. version)

1. a) Prove or disprove: $\{1\}$ is definable (by an L-formula) in the structure $(\mathbb{Q},<,+)$ for the language L with $L^{n l}=\{<,+\}$.
b) Assume that $\left\{T_{n}: n \in \omega\right\}$ is a sequence of consistent theories in a language L such that $T_{n} \subseteq T_{n+1}$ for all $n \in \omega$ and $T_{n} \not \vDash T_{n+1}$ for all $n \in \omega$. Prove that $T^{*}=\bigcup_{n \in \omega} T_{n}$ is a consistent theory and that T^{*} is not finitely axiomatizable.
2. a) Let L be the language whose only non-logical symbol is the binary relation symbol E. An L-structure \mathfrak{A} is called a graph provided

$$
\mathfrak{A} \models \forall x \forall y(E x y \rightarrow E y x) \text { and } \mathfrak{A} \models \forall x \neg E x x .
$$

A graph \mathfrak{A} is connected iff for all $a \neq a^{*}$ in A either $E^{\mathfrak{A}}\left(a, a^{*}\right)$ holds or there are $a_{1}, \ldots, a_{n} \in A$ for some positive integer n such that $E^{\mathfrak{2}}\left(a, a_{1}\right), E^{\mathfrak{2}}\left(a_{i}, a_{i+1}\right)$ for all $1 \leq i<n$, and $E^{\mathfrak{2}}\left(a_{n}, a^{*}\right)$
all hold. Prove or disprove each of the following:
a) Every elementary substructure of a connected graph \mathfrak{A} is connected.
b) Every elementary extension of a connected graph \mathfrak{A} is connected.
3. a) Let T be a complete theory in a countable language L which has a prime model \mathfrak{A}. Assume further that \mathfrak{A} realizes every L-type (in finitely many variables) consistent with T. Prove that T is ω-categorical.
b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L - type consistent with T which is omitted in some model of T. Prove that Φ is realized by infinitely many elements in some model of T.
4. a) Let L be the language with $L^{n l}=\{+, \cdot,<, \overline{0}, s\}$ and let $\mathfrak{N}=(\omega,+, \cdot,<$ $, 0, s)$. Let T be a recursively axiomatizable L-theory such that $\mathfrak{N} \models T$, let $\varphi(x)$ be a \sum-formula of L, and let $D=\varphi^{\mathfrak{N}}$. Assume that D is not recursive. Prove that there is some $\mathfrak{A} \models T$ and some $n \in(\omega \backslash D)$ such that $\mathfrak{A} \models \varphi(\bar{n})$.
b) Let $A, B \subseteq \omega$ be disjoint r.e., non-recursive sets. Prove that $(A \cup B)$ is not recursive.
5. a) Let $R \subseteq(\omega \times \omega)$ be r.e., and assume that R_{k} is infinite for all $k \in \omega$. Prove that there is some recursive $C \subseteq \omega$ such that $\left(C \cap R_{k}\right) \neq \emptyset$ for all $k \in \omega$ and such that $(\omega \backslash C)$ is infinite.
b) Prove that there is some $f: \omega \rightarrow \omega$ such that for every recursive $g: \omega \rightarrow \omega$ there is some $n \in \omega$ such that $g(k)<f(k)$ for all $k \geq n$.
6. a) Let $A=\{e:\{e\}(k)=0$ for all $k \in \omega\}$ and let $B=\{e:\{e\}(k)=1$ for all $k \in \omega\}$. Prove that $A \equiv_{m} B$.
b) Let \mathfrak{N} be the standard model for arithmetic on the natural numbers, and let $T=\{\ulcorner\sigma\urcorner: \mathfrak{N} \models=\sigma\}$. Prove that $A \leq_{m} T$ for every arithmetic set A.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND gRadUate Written Exam

January 2006
LOGIC (Ph.D./M.A. version)

1. a) Let L be a language containing (at least) the binary relation symbol E. Let \mathfrak{A} be an L-structure such that $E^{2 d}$ is an equivalence relation on A. Prove that every $E^{2 d}$-equivalence class is finite iff every proper elementary extension \mathfrak{B} of \mathfrak{A} conatins an element which is not $E^{\mathfrak{B}}$ equivalent to any element of \mathfrak{A}.
b) Let T be a theory in a language L and let $\Phi(x)$ and $\Psi(y)$ be L-types. Assume that no model of T realizes both $\Phi(x)$ and $\Psi(y)$. Prove that there is some $\theta \in S n_{L}$ such that whenever $\mathfrak{A} \vDash T$ and \mathfrak{A} realizes $\Phi(x)$ then $\mathfrak{A} \vDash=\theta$, and whenever $\mathfrak{A} \vDash T$ and \mathfrak{A} realizes $\Psi(y)$ then $\mathfrak{A} \vDash \neg \theta$.
2. a) Let \mathfrak{A} be an L-structure. Assume that $T h\left(\mathfrak{A}_{A}\right)$ is axiomatized by some $\Sigma \subseteq S n_{L(A)}$ such that every sentence in Σ is either universal or the negation of a universal sentence. Prove that $T h\left(\mathscr{A}_{A}\right)$ is axiomatized by some $\Sigma^{*} \subseteq S n_{L(A)}$ consisting solely of universal sentences. [Recall that θ is universal iff it has the form $\forall x_{0} \ldots \forall x_{k} \varphi$ where φ is an open formula.]
b) Let T be a complete theory in a countable language L. Assume that there is some complete non-principal 1-type consistent with T. Prove that every model of T realizes infinitely many complete 1 -types.
3. Let. $2 \mathfrak{A}$ be an L-structure and let $\Phi(x)$ be a complete L-type. Assume that $\Phi(x)$ is realized by exactly three elements in \mathfrak{A}.
a) Assuming, in addition, that $\Phi(x)$ is principal, prove that $\Phi(x)$ is realized by exactly three elements in every L-structure \mathfrak{B} elementarily equivalent to \mathfrak{A}.
b) Assuming, in addition, that \mathfrak{A} is w-saturated (but not that Φ is principal), prove that $\Phi(x)$ is realized by exactly three elements in every L-structure \mathfrak{B} elementarily equivalent to \mathfrak{A}.
c) Give an example of L, L-structures \mathfrak{A} and \mathfrak{B}, and a complete L-type $\Phi(x)$ such that $\Phi(x)$ is realized by exactly three elements in \mathfrak{A} and $\mathfrak{A} \equiv \mathfrak{B}$, but. $\Phi(x)$ is not realized by exactly three elements in \mathfrak{B}.
4. a) Let $S \subseteq(\omega \times \omega)$ be r.e., and assume that $\bigcup_{k \in \omega} S_{k}$ is recursive. Prove that there is some recursive $R \subseteq(\omega \times \omega)$ such that $R_{k} \subseteq S_{k}$ for all $k \in \omega$ and $\bigcup_{k \in \omega} R_{k}==\bigcup_{k \in \omega} S_{k}$.
b) Let T be a consistent theory in a language with just finitely many nonlogical symbols, including at least the unary function symbol s and the constant $\overline{0}$. Assume that every recursive relation is representable in T. Prove that T is undecidable.
5. a) Let $A_{0}=\{e \in \omega: \forall k(\{e\}(k)=0)\}$ and $A_{1}=\{e \in \omega: \forall k(\{e\}(k)=1)\}$. Prove or disprove: there is some recursive $B \subseteq \omega$ such that $A_{0} \subseteq B$ and $\left(A_{1} \cap B\right)=\emptyset$.
b) Let $A, B \subseteq \omega$. Explicitly define some $C \subseteq \omega$ such that the Turing degree of C is the least upper bound of the Turing degree of A and the Turing degree of B. You must prove that C has these properties.
6. a) Recall that INF $=\left\{e \in \omega: W_{e}\right.$ is infinite $\}$. Prove that
$\mathrm{INF} \leq_{m}\{e \in \omega: \forall k(\{e\}(k)=0)\}$.
b) Define $E \subseteq(\omega \times \omega)$ by $E=\left\{\left(e_{1}, e_{2}\right):\left\{e_{1}\right\}=\left\{e_{2}\right\}\right\}$. Place E in the arithmetic hierarchy, that is determine (with proof) some $n \in \omega$ such that either $E \in \Sigma_{n}$ or $E \in \Pi_{n}$.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND
 GRADUATE WRITTEN EXAM

August 2005
LOGIC (Ph.D./M.A. version)

1. a) Let L be a language containing (at least) the unary function symbol s. An L-structure \mathfrak{A} is periodic iff. for every $a \in A$ there is some positive integer n such that $\left(s^{\mathfrak{A}}\right)^{n}(a)=a$. Prove that there is no L-theory T such that for all L-structures $\mathfrak{A}, \mathfrak{A} \models T$ iff \mathfrak{A} is periodic.
b) Let T be a complete ω-categorical theory in a countable language L. Let $\varphi(x, y) \in F m_{L}$ and let \mathfrak{A} be any model of T. Prove that there is some $n \in \omega$ such that for every $a \in A$ either $\left|\varphi^{\mathfrak{A}}(x, \bar{a})\right|<n$ or $\varphi^{\mathfrak{2}}(x, \bar{a})$ is infinite.
2. a) Let L be the language with $L^{n l}=\{+, \cdot,<, \overline{0}, s\}$, let $\mathfrak{N}=(\omega,+, \cdot,<, 0, s)$, and let \mathfrak{A} be any proper elementary extension of \mathfrak{N}. Let $\varphi(x) \in F m_{L}$. Prove that $\varphi^{\mathfrak{N}}$ is infinite if and only if there is some $a \in A$ such that $a \in\left(\varphi^{\mathfrak{M}} \backslash \omega\right)$.
b) Let T be a complete theory in a countable language L. Let $\Phi(x)$ and $\Psi(x)$ be types consistent with T. Assume that every model of T realizes either Φ or Ψ (or both). Prove that either every model of T realizes Φ or every model of T realizes Ψ.
3. Let T be a complete theory in a countable language L with infinite models.
a) Prove that every countable model of T has a proper countable elementary extension.
b) Assume that $\mathfrak{A} \models T$ is countable and ω_{1}-universal. Prove that \mathfrak{A} is isomorphic to some proper elementary extension of itself.
c) Assume that $\mathfrak{A} \models T$ is countable and isomorphic to every countable elementary extension of itself. Prove that \mathfrak{A} is ω-saturated.
4. Let L be the language with $L^{n l}=\{+, \cdot,<, \overline{0}, s\}$ and let $\mathfrak{N}=(\omega,+, \cdot,<, 0, s)$.
a) Define the function $\pi: \omega \rightarrow \omega$ by $\pi(n)=$ the number of primes $\leq n$. Prove or disprove: there is some $\varphi(x, y) \in F m_{L}$ which defines the graph of π (that is, the relation $\pi(n)=l$) in \mathfrak{N}.
b) Prove that there is some $\theta(y) \in F m_{L}$ such that for every \sum-formula $\varphi(x)$ and for every $n \in \omega$ we have $\mathfrak{N} \vDash \theta(\overline{\lceil\varphi(\bar{n})\rceil})$ iff $\mathfrak{N} \vDash \varphi(\bar{n})$.
5. a) Assume that $R \subseteq \omega \times \omega$ is r.e., R_{k} is infinite for all $k \in \omega$, and $\left(R_{k} \cap R_{l}\right)=\emptyset$ whenever $k \neq l$. Prove that there is some recursive $C \subseteq \omega$ such that $\left|C \cap R_{k}\right|=1$ for all $k \in \omega$.
b) Give an example of a theory T in a language L with just finitely many non-logical symbols which is undecidable but not essentially undecidable (you must establish these properties of T).
6. a) Prove or disprove: there is some arithmetic relation $R \subseteq \omega \times \omega$ such that for every arithmetic $X \subseteq \omega$ there is some $k \in \omega$ such that $X=R_{k}$.

Let $A=\left\{e \in \omega: 0 \in W_{e}\right\}, B=\left\{e \in \omega: 1 \in W_{e}\right\}$, and let $C=\left\{e \in \omega: 0 \notin W_{e}\right\}$. Prove that
b) $A \leq_{m} B$, but
c) $A \not \pm_{m} C$.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM
 January 2005
 LOGIC (Ph.D./M.A. version)

1. a) Let T be a theory in a language L and let $\varphi(x), \psi_{k}(x) \in F m_{L}$ for all $k \in \omega$. Assume that $T \models \forall x\left(\psi_{k} \rightarrow \psi_{k+1}\right)$ for all $k \in \omega$. Assume further that for every $\mathfrak{A} \models T$ and every $a \in A$ we have
$\mathfrak{A}_{A} \models \varphi(\bar{a})$ iff there is some $k \in \omega$ such that $\mathfrak{A}_{A} \models \psi_{k}(\bar{a})$.
Prove that there is some $k \in \omega$ such that $T \vDash \forall x\left(\varphi \leftrightarrow \psi_{k}\right)$.
b) Prove that there is some $\mathfrak{A} \equiv(\omega,<)$ such that $(\mathbb{R},<)$ can be isomorphically embedded into \mathfrak{A}.
2. a) Let L be the language whose only non-logical symbol is a binary relation symbol $<$ and let \mathfrak{B} be the L-structure $(\mathbb{Q},<)$. Let $X \subseteq \mathbb{Q}$ be finite. Prove that the set \mathbb{Z} is not definable in the $L(X)$-structure \mathfrak{B}_{X}.
b) Let L be the language whose only non-logical symbol is a binary relation symbol E. Let \mathfrak{A} be the L-structure such that
$E^{\mathfrak{A}}$ is an equivalence relation on A,
there is exactly one n-element equivalence class for every positive integer n, and
there are no infinite equivalence classes.
Is there is some proper substructure \mathfrak{B} of \mathfrak{A} such that $\mathfrak{A} \equiv \mathfrak{B}$? Prove or disprove.
3. a) Let T be a complete theory in a countable language L. Assume that T has no countable ω-saturated model. Prove that every type consistent with T is realized on at least two non-isomorphic countable models of T.
b) Let T be a complete theory in a countable language L. Let $\Phi(x)$ be a complete non-principal type consistent with T. Let \mathfrak{A} be an ω-saturated model of T. Prove that Φ is realized by infinitely many elements of A.
4. a) Let T be a consistent recursively axiomatizable theory in the language L for arithmetic, let $\varphi(x) \in F m_{L}$, and let $A \subseteq \omega$. Assume that A is weakly representable in T by φ and A is not recursive. Prove that there is some $k \in \omega$ such that $k \notin A, T \nvdash \neg \varphi(\bar{k})$, and $T \nvdash \varphi(\bar{k})$.
b) Let L be a language with just finitely many non-logical symbols which contains at least the unary function symbol s and the constant symbol $\overline{0}$. Let T be a consistent theory of L such that all recursive functions and relations are representable in T. Prove that T is undecidable.
5. a) Let $A \subseteq \omega$ be an infinite r.e. set. Prove that there are infinite recursive sets B_{0} and B_{1} contained in A such that $\left(B_{0} \cap B_{1}\right)=\emptyset$.
b) Let $A, B \subseteq \omega$. Prove that B is r.e. in A iff $B \leq_{m} A^{\prime}$.
6. a) Let $A=\{e \in \omega:\{e\}(e)=e\}$. Prove that A is not recursive.
b) Let $A=\left\{e \in \omega:\left|W_{e}\right| \leq 1\right\}$ and let $B=\left\{e \in \omega:\left|W_{e}\right| \geq 2\right\}$. Prove that $A \equiv_{T} B$ but $A \not \equiv_{m} B$.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August 2004
LOGIC (Ph.D./M.A. version)

1. a) Let T be a theory in a language L containing at least the binary relation symbol E. Assume that for every $\mathfrak{A} \models T, E^{\mathfrak{A}}$ is an equivalence relation on A. Assume further that whenever $\mathfrak{A} \models T, \mathfrak{A} \prec \mathfrak{B}$, and $a \in A$ then $\left\{b \in B: E^{\mathfrak{B}}(a, b)\right.$ holds $\} \subseteq A$. Prove that there is some $n \in \omega$ such that for every $\mathfrak{A} \models T$ every $E^{\mathfrak{N}}$-class has $<n$ elements.
b) Let T be a theory of L and let $\Phi(x)$ and $\Psi(x)$ be L-types. We say that a formula $\theta(x)$ of L separates Φ and Ψ if in every model of T every element realizing Φ satisfies θ and every element realizing Ψ satisfies $\neg \theta$. Assume that no formula of L separates Φ and Ψ. Prove that T has a model realizing ($\Phi \cup \Psi$).
2. a) Prove that there is no formula $\varphi(x)$ which defines $\{1\}$ in the structure ($\mathrm{Q},<,+$).
b) Prove or disprove: $\operatorname{Th}((\mathrm{Q},+, \cdot,<, 0,1))$ has a countable ω-saturated model.
3. a) Let T be a complete theory in a countable language. Assume that there is some complete, non-principal type in one variable consistent with T. Prove that there are infinitely many complete types in one variable consistent with T.
b) Let L be the language whose only non-logical symbol is the binary relation symbol $<$. An L-structure \mathfrak{A} is a linear order provided $<^{\mathfrak{A}}$ is a linear order of A. Prove that there is some infinite linear order \mathfrak{A} such that every L-sentence true on \mathfrak{A} is also true on some finite linear order.
4. a) Let $A \subseteq \omega$ be an infinite r.e. set. Prove that there is some infinite recursive set $B \subseteq A$.
b) Let L be the language for arithmetic on the natural numbers, that is, $L^{n l}=\{+, \cdot,<, \overline{0}, s\}$. Let $A=\{\lceil\sigma\rceil: \models \sigma\}$. Prove that A is an m-complete r.e. set.
5. a) Let $A=\left\{e \in \omega: W_{e}=\emptyset\right\}$ and let $B:=\left\{e \in \omega: W_{e}=\omega\right\}$. Prove that A and B are recursively inseparable, that is there is no recursive $C \subseteq \omega$ such that $A \subseteq C$ and $(B \cap C)=\emptyset$.
b) Prove that there is some $B \subseteq \omega$ such that $A \leq_{m} B$ for every arithmetic set $A \subseteq \omega$.
6. a) Define a partial recursive function g of one argument which cannot be extended to a total recursive function, i.e., there is no total recursive $f: \omega \rightarrow \omega$ such that $f(n)=g(n)$ whenever $g(n) \downarrow$.
b) Prove that there are infinitely many $e \in \omega$ such that $\{e\}(e+1)=2 e$.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND graduate written Exal

January 2004
LOGIC (Ph.D./M.A. version)

1. a) Let L be a countable language containing at least the binary relation symbol E. Let T be a theory of L such that in every model \mathfrak{A} of T, $E^{\mathfrak{A}}$ is an squivalence rclation on A. Let $\varphi(x) \in F m_{L}$. Assurne that no model \mathfrak{A} of T contains an element satisfying φ whose $E^{\mathfrak{A}}$-class is infinite. Prove that there is some $n \in \omega$ such that no model \mathfrak{A} of T contains an element satisfying φ whose $E^{2 d}$-class has $>n$ elements.
b) Let $\mathfrak{A}=(\omega,+, \cdot)$ and let \mathfrak{B} be a proper elementary extension of \mathfrak{A}. Prove that there are infinitely many primes in ($B \backslash \omega$). [An element b of B is prime if it cannot be expressed in \mathfrak{B} as the product of two elements of B each of which is different than $b]$
2. a) Let $L^{n l}=\{E\}$ where E is a binary relation symbol. Let \mathfrak{A} be the L-structure such that $E^{2 d}$ is an equivalence relation on A with exactly one n-element equivalence class for every positive integer n and with no infinite equivalence classes. Let \mathfrak{B} be a countable elementary extension of \mathfrak{A}. Prove that $t p_{\mathfrak{B}}\left(b_{1}\right)=t p_{\mathfrak{B}}\left(b_{2}\right)$ for all $b_{1}, b_{2} \in(B \backslash A)$.
b) Let $L=\left(L_{1} \cap L_{2}\right)$ and assume that ($L_{i} \backslash L$) contains just constant symbols, for $i=1,2$. Let T be a complete theory of L and let T_{i} be a theory of L_{i} for $i=1,2$. Assume that some model of T can be expanded to a model of T_{1}, and also that some model of T can be expanded to a model of T_{2}. Prove that there is some model \mathfrak{A} of T such that \mathfrak{A} can be expanded to a model \mathfrak{A}_{1} of T_{1} and \mathfrak{A} can also be expanded to a model \mathfrak{A}_{2} of \mathcal{T}_{2}.
3. a) Let L be a countable language containing at least the binary relation symbol E. Let T be a theory of L such that $T \models \forall x \forall y(E x y \rightarrow E y x)$. If $\mathfrak{A} \models T$ and $a, a^{*} \in A$ with $a \neq a^{*}$ we say that a, a^{*} are connected if either $E^{\mathfrak{M}}\left(a, a^{*}\right)$ holds or there are $a_{1}, \ldots, a_{n} \in A$ for some positive integer n such that

$$
E^{\mathfrak{2}}\left(a, a_{1}\right), E^{2}\left(a_{i}, a_{i+1}\right) \text { for all } I \leq i<n \text {, and } E^{2}\left(a_{n}, a^{*}\right)
$$

all hold. Assume that in every model of T there is a pair of distinct elements that is not connected. Prove that there is some $\psi(x, y) \in F m_{L}$ consistent with T such that for every $\mathfrak{A} \models T$ and every $a, a^{*} \in A$, if $\mathfrak{A}_{A} \models \psi\left(\bar{a}, \bar{a}^{*}\right)$ then $a \neq a^{*}$ and a, a^{*} are not connected.
b) Let T be a complete theory in a countable language L. Let \mathfrak{A} be a prime model of T and let $\Phi(x)$ be a complete type of L. Assume that Φ is realized by exactly two elements in \mathfrak{A}. Prove that Φ is realized by exactly two elements in every model of T.
4. a) Let $R \subseteq \omega \times \omega$ be r.e. and assume that $\bigcup_{k \in \omega} R_{k}$ is recursive. Prove that there is some recursive $S \subseteq \omega \times \omega$ such that $S_{k} \subseteq R_{k}$ for all $k \in \omega$ and $\bigcup_{k \in \omega} S_{k}=\bigcup_{k \in \omega} R_{k}$.
b) A total function $f: \omega \rightarrow \omega$ is monotone iff for all $m, n \in \omega$, if $m \leq n$ then $f(m) \leq f(n)$. Let f be a recursive monotone function. Prove that the range of f is recursive. [Warning: f need not be strictly increasing]
5. a) Give an example of a theory T which is undecidable but not essentially undecidable. [You must prove both assertions about T]
b) Prove that there are r.e. sets $A, B \subseteq \omega$ such that $(A \cap B)=\emptyset$ but there is no recursive $C \subseteq \omega$ such that $A \subseteq C$ and $(B \cap C)=\emptyset$.
6. a) Prove that $\left\{e: 2 \in W_{e}\right\} \equiv_{m}\left\{e: 3 \in W_{e}\right\}$.
b) Let $I=\left\{e \in \omega: W_{e}=\{3\}\right\}$. Determine some $n \in \omega$ such that either $I \in \Sigma_{n}$ or $I \in \Pi_{n}$. [You need not prove your choice of n is minimal]

DEPARTMENT OF MATHEMATICS
 LiNIVERSITY OF MARYLAND
 graduate written exavi

August 2003
LOGIC (Ph.D./M.A. version)

1. a) Let T be a theory of a language L. Assume that there is some $0 \in S n_{L}$ such that for every model \mathfrak{d} of T, \mathfrak{A} is infinite $\mathfrak{i f f} \mathfrak{A} \vDash \theta$. Prove that, there is some $n \in \omega$ such that every finite model of T has at most n elements.
b) Prove that $(\mathrm{Q},+, \cdot, 0,1)$ is a prime model of its complete theory.
2. a) Let $\mathfrak{N}=(\omega,+, \cdot,<, 0, s)$ be the standard model for arithmetic on ω and let \mathfrak{B} be some fixed proper elementary extension of \mathfrak{N}. Let $\varphi(x) \in F m_{L}$ and assume that $\varphi^{\mathfrak{N}}=\varphi^{\mathfrak{B}}$. Prove that $\varphi^{\mathfrak{N}}$ is finite.
b) Let $L^{n l}=\{E\}$ where E is a binary relation symbol. An L-structure \mathfrak{A} is a graph provided $\mathfrak{A} \vDash \forall x \forall y(E x y \rightarrow E y x)$. A graph \mathfrak{A} is connected iff for all $a, a^{*} \in A$ with $a \neq a^{*}$ there are $a_{1}, \ldots, a_{n} \in A$ for some $n \in \omega$ such that

$$
E^{\mathfrak{L}}\left(a, a_{1}\right), E^{\mathfrak{2}}\left(a_{i}, a_{i+1}\right) \text { for all } 1 \leq i<n \text {, and } E^{\mathfrak{Q}}\left(a_{n}, a^{*}\right)
$$

all hold. Let T be an L-theory such that every connected graph is a model of T. Prove that there is some graph which is a model of T but is not connected.
3. a) Let T be a complete theory in a countable language L. Assume that for every $\varphi(x) \in F m_{L}$ consistent with T there is some $\psi(x) \in F m_{L}$ such that both $(\varphi \wedge \psi)$ and $(\varphi \wedge \neg \psi)$ are consistent with T. Prove that T cloes not have a prime model.
b) Let T be a complete theory in a countable language L. Let $\mathfrak{A} \vDash T$ be countable and assume that \mathfrak{A} is isomorphic to each of its countable elementary extensions. Prove that T has a countable ω-sat,urated model and that \mathfrak{A} itself is ω-saturated.
4. a) Let L be a language with just finitely many non-logical symbols, including at least the unary function symbol s and the constant 0 . Let T be a theory of L such that every recursive relation is representable in T. Prove that T is undecidable.
b) Let $A=\{\lceil\sigma\rceil: \sigma$ is a Σ-sentence and $\mathfrak{N} \models \sigma\}$, where \mathfrak{N} is the usual model for arithmetic on ω. Prove that A is not Π_{I}.
5. a) Let $R \subseteq \omega \times \omega$ be r.e. Assume that $R_{k} \neq \emptyset$ for all $k \in \omega, \bigcup_{k \in \omega} R_{k}=\omega$, and for all $k, l \in \omega$ either $R_{k}=R_{l}$ or $R_{k} \cap R_{l}=\emptyset$. Assume further that. there is some recursive $C \subseteq \omega$ such that for all $k \in \omega,\left|R_{k} \cap C\right|=1$. Prove that R is recursive.
b) Let $A=\left\{e \in \omega: W_{e}\right.$ is either finite or cofinite $\}$. Find an n so that $A \in \Delta_{n}$. [You need not prove your n is the least possible]
6. a) Let $A, B \subseteq w$ be recursively inseparable r.e. sets (so $A \cap B=\emptyset$ and there is no recursive set A^{*} with $A \subseteq A^{*}$ and $A^{*} \cap B=\emptyset$.) Assume that $A \leq{ }_{m} C$ where $C \subseteq \omega$. Prove that there is some infinite r.e. set $D \subseteq \omega$ such that $C \cap D=0$.
b) Let $I=\left\{e \in \omega:\left|W_{e}\right|=1\right\}$. Prove that every r.e. set is many-one reducible to I.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January 2003
LOGIC (Ph.D./M.A. version)

1. a) Prove or disprove: $(\mathrm{Z},+)$ has a proper elementary substructure.
b) Assume that $\mathfrak{\mathcal { A }}$ and \mathfrak{B} are L-structures and $\mathfrak{A} \equiv \mathfrak{B}$. Prove that there is some \mathfrak{C} such that both \mathfrak{x} and \mathfrak{B} can be elementarily embedded in \mathfrak{C}.
2. a) Let L be a countable language containing (at least) the binary relation symbol E. Let T be a complete ω-categorical L-theory, let a be a countable model of T, and assume that $E^{\mathfrak{a}}$ is an equivalence relation on A. Prove that there is some $n \in \omega$ such that for every $a \in A$ the $E^{2 a}$-class of a is either infinite or has fewer than n elements.
b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be a complete L-type. Assume that T has some model which contains exactly one element realizing Φ and also some model which contains exactly two elements realizing Φ. Prove that T has a model omitting Φ.
3. a) Let $L^{n l}=\left\{c_{n}: n \in \omega\right\}$. Let \mathfrak{A} be an L - structure such that $c_{n}{ }^{2 x} \neq c_{m}{ }^{\text {a }}$ for all $n \neq m$ and such that there is exactly one element $a^{*} \in A$ such that $a^{*} \neq c_{n}{ }^{\text {a }}$ for all $n \in \omega$. Prove that there is no formula $\varphi(x)$ of L such that $\varphi^{\boldsymbol{a}}=\left\{a^{*}\right\}$.
b) Let \mathfrak{a} be a countable ω-saturated structure for a countable language L. Let $a_{0} \in A$ be such that $h\left(a_{0}\right)=a_{0}$ for every automorphism h of \mathfrak{A}. Prove that there is some formula $\varphi(x)$ of L such that $\varphi^{\alpha}=\left\{a_{0}\right\}$.
4. a) Let T be a recursively axiomatizable theory true on \mathfrak{N}, the standard model for arithmetic on the natural numbers. Let $X \subseteq \omega$ be r.e. but not recursive, and assume that $X=\varphi^{n}$ for some \sum-formula $\varphi(x)$. Prove that there is some $\mathfrak{B} \models T$ such that $\mathfrak{B} \models \varphi(\bar{n})$ for some $n \in(\omega \backslash X)$.
b) Let $R \subseteq(\omega \times \omega)$ be r.e. Assume the R_{n} 's are infinite and pairwise disjoint. Prove that there is some recursive $C \subseteq \omega$ such that $\left|R_{n} \cap C\right|=$ 1 for all $n \in \omega$.
5. a) Let $L^{n i}=\emptyset$. Give an example of a theory T of L which is undecidable but all its complete extensions (in L) are decidable.
b) Let T be a recursively axiomatizable theory in a language L with just finitely many non-logical symbols. Assume that T has just finitely many complete extensions (in L). Prove that T is decidable.
6. a) Recall that
$F I N=\left\{e: W_{e}\right.$ is finite $\}$ and $I N F=\left\{e: W_{e}\right.$ is infinite $\}$.
Prove that $F I N \leq_{T} I N F$ but $F I N \leq_{m} I N F$.
b) Recall that $R E C=\left\{e: W_{e}\right.$ is recursive $\}$. Prove that $R E C$ is arithmetic, that is, that $R E C$ is in Σ_{n} or Π_{n} for some $n \in \omega$. Although you should try to make n as small as possible, you do not need to prove your choice of n is minimal.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August 2002
LOGIC (Ph.D./M.A. version)

1. a) Let a theory T and sentences σ_{n} of a language L be given. Assume that $T \models\left(\sigma_{n} \rightarrow \sigma_{n+1}\right)$ for all $n \in \omega$. Assume further that for every $\mathfrak{A} \models T$ there is some $n \in \omega$ such that $\mathfrak{A} \models \sigma_{n}$. Prove that there is some $n_{0} \in \omega$ such that $T \models\left(\sigma_{n_{0}+1} \rightarrow \sigma_{n_{0}}\right)$. [In fact, $T \models\left(\sigma_{m} \rightarrow \sigma_{n_{0}}\right)$ will hold for all $m>n_{0}$.]
b) Let L_{0} be the language containing just the binary relation symbol $<$, let L be a language containing L_{0}, and let T be a theory of L. Assume that $(\omega,<)$ embeds into the L_{0}-reduct of some model of T. Prove that $(\mathrm{Q},<)$ can be embedded into the L_{0}-reduct of some model of T.
2. a) Let $\mathfrak{\alpha}$ be $(\omega,+, \cdot,<, 0, s)$. In \mathfrak{A} the set of primes is definable by the following formula $\varphi(x)$:

$$
(s \overline{0}<x) \wedge \forall y \forall z(x=y \cdot z \rightarrow(x=y) \vee(x=z))
$$

Let \mathfrak{B} be any proper elementary extension of \mathfrak{A}. Prove that \mathfrak{B} contains a new prime, that is, some element b satisfying $\varphi(x)$ which is not in ω.
b) Let L be the language whose only non-logical symbol is the binary relation E and let T be the L-theory axiomatized by sentences saying that E is an equivalence relation on the universe with infinitely many equivalence classes, each of which is infinite. Prove that T is model complete, that is, for all models \mathfrak{A} and \mathfrak{B} of T, if $\mathfrak{A} \subseteq \mathfrak{B}$ then $\mathfrak{A} \prec \mathfrak{B}$.
3. a) Let T be a complete theory in a countable language L. Assume that there is some non-principal complete type in one variable consistent with T. Prove that every model of T realizes (at least) three different complete types in one variable. [In fact each model of T will realize infinitely many, but you need not prove this.]
b) Let μ be an ω-saturated L-structure and let $\varphi(x, y)$ be an L-formula. Assume that for every $a \in A$ the set $\varphi^{a}(x, \bar{a})$ is finite. Prove that there is some $n \in \omega$ such that for every $a \in A$ the set $\varphi^{a}(x, \bar{a})$ contains at most n elements.
4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and that R_{n} is infinite for every $n \in \omega$. Let $g: \omega \rightarrow \omega$ be any recursive function. Prove that there is some recursive function $f: \omega \rightarrow \omega$ such that $f(n) \in R_{n}$ and $g(n)<f(n)$ for all $n \in \omega$.
b) Let L be the language whose only non-logical symbol is the binary relation E and let T_{0} be the L-theory axiomatized by sentences stating that E is an equivalence relation on the universe. Prove that T has a complete undecidable extension.
5. a) Define $f: \omega \rightarrow \omega$ by

$$
f(n)=(\mu k)[\{n\}=\{k\}] .
$$

Prove that f is not recursive.
b) Assume that $B \subseteq \omega$ is such that $A \leq_{m} B$ for all r.e. sets A. Prove that B contains some infinite r.e. subset.
6. a) Let $A_{n} \subseteq \omega$ be given for all $n \in \omega$. Prove that there is some $B \subseteq \omega$ such that $A_{n} \leq_{T} B$ holds for all $n \in \omega$.
b) Let $A=\{e \in \omega:\{e\}(5)=7\}$. Prove that $A \equiv_{m} K$. [Recall that $K=$ $\{e:\{e\}(e) \downarrow\}]$

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January 2002
LOGIC (Ph.D./M..A. version)

1. a) Let I be a theory of $[$, !ei $\Phi(x)$ and $\Psi(x)$ be yypes ot L. Assume rinat for every $a=I$ and all $a \in A, a$ realizes Φ iff a coes not realize Ψ Prove that there is some $\varphi(x) \in F m_{L}$ such thar $\Phi^{2}=0^{2}$ for every model an of T
b) Let L be a language concaining (as least) the 'oinary relation symbol E Let ${ }_{2}$ be an w-saturated L-strucrure in which $E^{2 x}$ is an equivalence relation on $\frac{1}{4}$ wich exactly one infinite equivalence class. Prove that there is some $n \in w$ such that every finite E^{m}-class has at most n elements.
2. a) Prove or disprove: $(\omega, \dot{+})$ has a proper elementary substructure.
b) Let T be an L-itheory. Ler μ be an L-structure which cannot be embedded in any model of I. Prove that there is an existential sentence θ of L (that is, \exists bas the form $\exists x_{1} \ldots \exists x_{n} \alpha$ where α is an open formula of L) such chai ${ }^{n}=\theta$ buc $I \equiv-\theta$.
3. a) Prove that the structure $(\omega, 1)$ has uncountably many automorphisms (where $n!k$ if $s=n \cdot l$ for some $l \in \omega$).
b) Let I be a complece theory in a countable language I and let $\Phi(x)$ be an L-type which is omitted on some model of T. Assume further shat any iwo countable models of T omitting Φ are isomorphic. Prove that every countable model of T omitting Φ is prime.
[Warning: You cannor assume that T has a prime model]
4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and that $U_{k \in \mu} R_{k}=\omega$. Prove that there is some recursive $S \subseteq R$ such that $U_{k \in \mu} S_{k}=\omega$.
b) Let L be a language with only finitely many non-logical symools and let $L^{\prime}=L \cup\{c\}$ where c is a constant symbol not in L. Let T^{\prime} be a finitely axiomarizable undecidable theory of L^{\prime} and let $T=T^{\prime} \cap S n_{L}$. Prove that T is also undecidable.
5. Recall that subsets 4 and B of ω are called recursevely inseparable if there is no recursive $C \subseteq w$ such that $A \subseteq C$ and $B \cap C=0$.
a) Prove that there are disjoinc r.e. subsets t and B of w which are recursively inseparaole.
b) Assume thar A and B are disjoint re subsers of which are recursively inseparable. Prove that $w \backslash(A \cup B)$ is ininite.
6. a) Let $A=\{\mid \sigma\rceil: \sigma \in S n_{L}$ and $\left.Q \vdash \sigma\right\}$ (where L is the usual language for arichmeric on the natural numbers). Prove that 4 is an m-complete r.e. set.
b) Prove that there is some $A \subseteq \omega$ such that $A \in \Sigma_{3}$ but $A \subseteq \Pi_{2}$.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August 2001
LOGIC (Ph.D./M.A. version)

1. a) Let T be a theory of a language L, and let $\varphi_{i}(x)$ be formulas of L for all $i \in \omega$. Assume that for all $i \in \omega$
$T \models \forall x\left(\varphi_{i+1}(x) \rightarrow \varphi_{i}(x)\right)$ and $T \models \neg \forall x\left(\varphi_{i}(x) \rightarrow \varphi_{i+1}(x)\right)$.
Prove that T has a model \mathfrak{A} with an element a such that $\mathfrak{A} \models \varphi_{i}(\bar{a})$ for all $i \in \omega$.
b) Let T be a complete theory in a countable language L, and assume that for each $n>0$ there are just countably many complete types in n free variables consistent with T. Prove that T has a prime model.
2. a) Prove or disprove: $(\mathrm{Z},<)$ has a proper elementary submodel.
b) Does $T h((Z,+, 1))$ have a countable ω - saturated model? Prove your answer.
3. a) Let \mathfrak{a} be the unique countable model of a a complete ω-categorical theory T in a countable language L, and let $\varphi(x, y) \in F m_{L}$. Prove that there is some $n \in \omega$ such that for every $a \in A$, either $\left|\varphi^{\mathfrak{2}}(x, \bar{a})\right|<n$ or $\varphi^{2}(x, \bar{a})$ is infinite.
b) Let T be a complete theory in a countable language L having infinite models. Assume that for every $\varphi(x) \in F m_{L}$ and for every $\mathfrak{A} \vDash T$, φ^{2} is either finite or cofinite (meaning its complement is finite). Prove that there is exactly one non-principal complete type $\Phi(x)$ in the single variable x consistent with T.
4. a) Let T be a consistent recursively axiomatized theory containing the axioms for Q. Prove that there is a formula $\varphi(x)$ such that
$T \models \varphi(\bar{n})$ for all $n \in \omega$ but $T \nLeftarrow \forall x \varphi(x)$.
b) Let $R \subseteq \omega \times \omega$ be r.e., and assume that $\left|\omega \backslash R_{\dot{k}}\right|=2$ for every $k \in \omega$. Prove that R is recursive.
5. a) Assume that $A \subseteq \omega$ is such that

$$
\left\{e: W_{e}^{-}=\emptyset\right\} \subseteq A \text { and }\left\{e: W_{e}=\omega\right\} \cap A=\emptyset
$$

Prove that A is not recursive.
b) Assume that $A \subseteq w$ is such that $K \leq_{m} A$. Prove that A contains an infinite r.e. subset.
[Recall that $K=\left\{e: e \in W_{e}\right\}$]
6. a) Let T be a consistent, decidable theory in a language L with just finitely many non-logical symbols. Prove that $T \subseteq T^{*}$ for some complete, decidable theory T^{*} of L.
[Hint: Let $\left\{\sigma_{n}: n \in \omega\right\}$ be a recursive list of all sentences of $L \ldots$...]
b) Prove that $T O T \equiv_{m} I N F$.
[Recall that $T O T=\left\{e: W_{e}=\omega\right\}$ and $I N F=\left\{e: W_{e}\right.$ is infinite $\}$]

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January 2001
LOGIC (Ph.D./M.A. version)

1. a) Assume that $L \subseteq L^{\prime}$, let T^{\prime} be an L^{\prime}-theory and let a be an L-structure. Assume that there is no $\mathfrak{B}^{\prime} \vDash T^{\prime}$ such that \mathfrak{A} is elementarily equivalent to the L-reduct of \mathfrak{B} '. Prove that there is some $\sigma \in S n_{L}$ such that $\mathfrak{A} \vDash \sigma$ and $T^{\prime} \vDash \neg \sigma$.
b) Let $L^{n l}=\{E\}$ where E is a binary relation symbol. Let K be the class of all L-structures a^{2} for which E^{a} is an equivalence relation on A with at least one finite $E^{\text {nd }}$-class. Prove that there is no theory T of L such that $K=\operatorname{Mod}(T)$.
[Hint: Assume that $K \subseteq \operatorname{Mod}(T)$ and find $\mathfrak{a} \models T$ such that $\mathfrak{a} \notin K$.
2. a) Let L contain at least the binary relation symbol E, and let \mathfrak{a} be an infinite ω-saturated L-structure such that E^{a} is an equivalence relation on A. Assume that whenever $\mathfrak{A} \prec \mathfrak{B}$ and $a \in A$ then

$$
\left\{b \in B: E^{\mathfrak{R}}(a, b) \text { holds }\right\} \subseteq A .
$$

Prove that there is some $n_{0} \in \omega$ such that every $E^{2 y}$-class has at most n_{0} elements.
b) Let L be a countable language containing at least the unary relation symbols P_{n} for $n \in \omega$, and let T be a theory of L. Assume that T has a model \mathfrak{a} such that for every $\varphi(x) \in F m_{L}$ if $\varphi^{2 a} \neq \emptyset$ then there is some $k \in \omega$ such that $\left(\varphi^{21} \cap P_{k}{ }^{2 x}\right) \neq \emptyset$. Prove that T has a model \mathfrak{B} such that $B=\bigcup_{k \in \omega} P_{k}{ }^{\mathfrak{B}}$.
3. Let T be a complete theory in a countable language L. Recall that a complete type $\Phi(x)$ consistent with T is said to be non-principal provided it does not contain a complete formula $\varphi(x)$.
a) Assume that $\Phi(x)$ is a non-principal complete type consistent with T. Prove that T has some model which contains infinitely many elements realizing $\Phi(x)$.
b) Assume that there are no non-principal complete types $\Phi(x)$ in the single free variable x consistent with T. Prove that there are only finitely many complete types in the single free variable x consistent with T.
4. a) Let A and B be r.e. subsets of ω. Assume that $(A \cup B)$ is recursive. Prove that there are recursive sets $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ such that $(A \cup B)=\left(A^{\prime} \cup B^{\prime}\right)$.
b) Let A be an infinite r.e. subset of ω. Prove that there is an infinite recursive set B with $B \subseteq A$.
5. a) Give a theory T in a language L with just finitely many non-logical symbols which has an r.e. set of axioms but is such that

$$
\{n \in \omega: T \text { has a model } \mathfrak{A} \text { with }|A|=n\}
$$

is not recursive. Prove that it has these properties.
b) Assume that $R \subseteq \omega \times \omega$ is r.e. Let $A=\left\{k \in \omega: R_{k}\right.$ is infinite $\}$. Prove that A is Π_{2}.
6. a) Recall that $K=\left\{e \in \omega: e \in W_{e}\right\}$ and that $\operatorname{INF}=\left\{e \in \omega: W_{e}\right.$ is infinite $\}$. Prove that $\mathrm{K} \leq_{m} \mathrm{INF}$.
b) Let \mathcal{F} be a non-empty set of partial recursive functions of one argument and let $I=\{e \in \omega:\{e\} \in \mathcal{F}\}$. Prove that $I \not \mathbb{Z}_{m}(\omega \backslash I)$.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND
 GRADUATE WRITTEN EXAM

August 2000
LOGIC (Ph.D./M.A. version)

1. a) Let T be a theory of a language L containing (at least) the binary relation symbol E and so that for every $\mathfrak{A} \models T, E^{\mathfrak{H}}$ is an equivalence relation on A. Assume further that whenever $\mathfrak{A} \vDash T, \mathfrak{A} \prec \mathfrak{B}, a \in \mathcal{A}$ and $b \in(B \backslash A)$ then $\mathfrak{B}_{B} \models \neg E(\bar{a}, \bar{b})$. Prove that there is some $n_{0} \in \omega$ such that for every $\mathfrak{A} \models T$ all $E^{\mathfrak{a}}$-classes have $\leq n_{0}$ elements.
b) Let the only non-logical symbol of L be the binary relation symbol E. Let \mathfrak{A} be the L-structure in which $E^{\mathfrak{2}}$ is an equivalence relation on A with infinitely many 2 element classes and infinitely many 3 element classes and no other classes. Let $\mathfrak{A} \subseteq \mathfrak{B}$ where \mathfrak{B} adds exactly one more 2 element class and nothing else. Prove that $\mathfrak{A} \prec \mathfrak{B}$. [Hint: why are \mathfrak{A} and \mathfrak{B} elementarily equivalent?]
2. a) Is the structure $(R,+, \cdot, 0,1) \omega$-saturated? Explain.
b) Assume that the L-structure \mathfrak{A} realizes exactly three different complete L-types in one free variable. Prive that the same is true of every model of $T h(\mathfrak{A})$.
3. a) Let T be a complete theory in a countable language L, and let $\Phi(x)$ be an L-type. Assume that in every model of T the type Φ is realized by at most 2 elements. Prove that there is a formula $\varphi(x)$ of L such that for every $\mathfrak{A} \vDash T$, $\Phi^{\mathfrak{d}}=\varphi^{\mathfrak{A}}$.
b) Let T be a complete theory in a countable language L which has no prime model. Let $\Phi(x)$ be an L-type omitted on some model of T. Prove that T has at least two nonisomorphic countable models omitting Φ.
4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and that R_{k} is infinite for all $k \in \omega$. Prove that there is a strictly increasing recursive function f on ω such that $f(k) \in R_{k}$ for all $k \in \omega$.
b) Prove that there is a function $g: \omega \rightarrow \omega$ such that for every recursive function f on ω there is some $n_{0} \in \omega$ so that for all $n \geq n_{0}$ we have $f(n)<g(n)$.
5. a) Assume that $R \subseteq \omega \times \omega$ is r.e. but not recursive and that $\bigcup_{k \in \omega} R_{k}$ is recursive. Prove that $R_{k} \cap R_{l} \neq \emptyset$ for some $k \neq l$.
b) Let f_{1} and f_{2} be partial recursive functions and assume that $f_{1} \neq f_{2}$. Let $B_{1}=\left\{e:\{e\}=f_{1}\right\}$ and let $B_{2}=\left\{e:\{e\}=f_{2}\right\}$. Prove that there is no recursive set A such that $B_{1} \subseteq A$ and $B_{2} \cap A=\emptyset$.
6. a) Prove that $\left\{e: 0 \in W_{e}\right\}$ is an m-complete r.e. set.
b) Let $\mathrm{REC}=\left\{e: W_{e}\right.$ is recursive $\}$. Use Post's Theorem to prove that REC is r.e. in $\emptyset^{\prime \prime}$.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January 2000
LOGIC (Ph.D./M.A. version)

1. a) Let a theory T and sentences σ_{n} for $n \in \omega$ be given. Assume that $T \models\left(\sigma_{n} \rightarrow \sigma_{n+1}\right)$ and $T \neq\left(\sigma_{n+1} \rightarrow \sigma_{n}\right)$ for all $n \in \omega$. Prove that T has a model g such that $风 \Vdash \neg \sigma_{n}$ for all $n \in \omega$
b) Let L be a language containing at least the binary relation symbol E, and let \mathfrak{A} be an L-structure so that $E^{\mathfrak{x}}$ is an equivalence relation on A. Assume that for every elementary extension \mathfrak{S} of \mathfrak{a} and every $b \in B$ there is some $a \in A$ such that $E^{2 n}(a, b)$ holds. Prove that E^{2} has just finitely many equivalence classes.
2. a) Prove that (Q, \leq) is isomorphically embeddable in some $\mathscr{B} \equiv(\omega, \leq)$
b) Prove or disprove: $(Z,+)$ has a proper elementary submodel.
3. a) Let L be a countable language containing at least the binary relation symbol E, and let T be a theory of L such that for every model a of T, E^{2} is an equivalence relation on A. Assume that for every model a of T some E^{x} class is infinite. Prove that there is some formula $\varphi(x)$ of L consistent with T so that whenever a is a model of $T, a \in A$ and $\mathfrak{A}_{\mathcal{A}} \vDash \varphi(\bar{a})$ then the $E^{\mathcal{X}}$-class of a is infinite.
b) Let T be a complete theory in a countable language L, let $\Phi(x)$ and $\Psi(x)$ be L-types, and let \mathfrak{a} be an ω-saturated model of T. Assume that $\Phi^{\mathscr{X}}=\left(A \backslash \Psi^{\mathscr{X}}\right)$. Prove that there is some formula $\varphi(x)$ of L such that for every model \mathfrak{B} of $T, \Phi^{\mathscr{B}}=\varphi^{\mathfrak{B}}$.
4. a) Let $R \subseteq \omega \times \omega$ be r.e. and assume that $R_{k} \neq \emptyset$ for all $k \in \omega$ and that $R_{k} \cap R_{l}=\emptyset$ for all $k \neq l$. Prove that there is some r.e. $C \subseteq \omega$ such that $\left|R_{k} \cap C\right|=1$ for all $k \in \omega$.
b) Let $X \subseteq \omega$ and a formula $\varphi(x)$ of the language of arithmetic be given. Assume that φ weakly represents X in every consistent theory T containing Q. Prove that X is recursive.
5. a) Let T be a recursively axiomatizable theory and assume that T has just finitely many complete extensions (in the same language). Prove that I is decidable.
b) Define $f: \omega \rightarrow \omega$ by $f(e)=$ the least d such that $\{d\}=\{e\}$. Prove that f is not recursive.
6. a) Give an example (with proof) of a set $X \subseteq \omega$ which is Π_{1} but not Σ_{1}
b) Prove or disprove: $\{\lceil\sigma\rceil: \mathfrak{N} \models \sigma\}$ is arithmetic.

DEPARTMENT OF MATHEXITICS L.VIVERSITY OF MARYLA.VD GRADUATE WRITTE N EX.A.M

August, 1999
LOGIC (Ph.D./M.A. version)

1. a) Let T and T^{\prime} be theories of L such that for every L - structure $\mathfrak{A}, \mathfrak{A} \vDash T$ iff $\mathfrak{a} \neq T^{\prime}$. Prove that T is finitely axiomatizable.
b) Prove that every countable linear order can be isomorphically embedded in (Q, \leq).
2. a) Prove or disprove: $(R \backslash\{0\} . \leq)$ is an elementary substructure of (R, \leq).
b) Let I be a complete ω-categorical theory in a countable language L. Prove that there is an integer k such that for every model \mathfrak{A} of T and every formula $\varphi(x)$ of L with just one free variable, if φ^{31} has more than k elements then $\varphi^{3 / 2}$ is infinite.
3. Let T be a complete theory in a countable language L, let \mathfrak{a} be an w saturated model of T, and let $\Phi(x)$ be a type in one free variable consistent with T. Assume that Φ is realized in \mathfrak{A} by exactly two elements of A. Prove that Φ is realized by exactly two elements in every model of T.
4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and $\bigcup_{k \in \omega} R_{k}=\omega$. Prove that there is some recursive $S \subseteq R$ such that $\bigcup_{k \in \omega} S_{k}=\omega$ and $S_{k} \cap S_{l}=\emptyset$ whenever $k \neq l$.
b) Let T be a consistent recursively axiomatizable extension of the theory Q. Find a formula $\varphi(x)$ such that $T \models \varphi(\bar{n})$ for all $n \in \omega$ but $T \neq$ $\forall x \varphi(x)$. (Be sure to show that the formula you define has this property:)
5. a) Let L be a language with just finitely many non-logical symbols and let $L^{\prime}=L \cup\{c\}$ where c is a constant symbol not in L. Assume that T^{\prime} is a finitely axiomatizable essentially undecidable theory of L^{\prime} and let $T=T^{\prime} \cap S n_{L}$. Prove that T is essentially undecidable.
b) Prove that $A=\left\{e \in \mathcal{L}^{\prime}:\{e\}(e)=e\right\}$ is not recursive.
6. $A n$ r.e. set $A \subseteq \omega$ is said to be simple if $(\omega \backslash A)$ is infinite but does not contain an infinite r.e. subset.
a) Prove that the intersection of two simple r.e. sets is simple.
b) Show that $K=\left\{e: e \in W_{e}\right\}$ is not simple.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

January, 1999
LOGIC (Ph.D./M.A. version)

1. a) Let L be a language containing at least the binary relation symbol E and let T be a theory of L so that in every model \mathfrak{A} of $T, E^{\mathfrak{a}}$ is an equivalence relation on A. Assume that in every model \mathfrak{A} of T, every E^{2}-class is finite. Prove that there is some $n \in \omega$ so that in every model \mathfrak{A} of T, every $E^{\mathfrak{x}}$-class contains at most n elements.
b) Let Σ_{1} and Σ_{2} be sets of sentences of L such that there is no sentence θ of L so that $\Sigma_{1} \vDash \theta$ and $\Sigma_{2} \models \neg \theta$. Prove that $\left(\Sigma_{1} \cup \Sigma_{2}\right)$ has a model.
2. a) Let \mathfrak{A} be an L-structure and let $\varphi(x)$ be a formula of L. Prove that $\varphi^{\mathfrak{A}}$ is finite iff there is no \mathfrak{B} so that $\mathfrak{A} \prec \mathfrak{B}$ and $\varphi^{\mathfrak{A}} \neq \varphi^{\mathfrak{B}}$.
b) Let $\left\{\varphi_{i}(x): i \in \omega\right\}$ be an infinite set of L-formulas and let \mathfrak{A} be an ω saturated L-structure. Assume that for every $a \in A$ there is some $i \in \omega$ such that $\mathfrak{A}_{A}=\varphi_{i}(\bar{a})$. Prove that for every L-structure \mathfrak{B} elementarily equivalent to \mathfrak{A}, for every $b \in B$ there is an $i \in \omega$ such that $\mathfrak{B}_{B} \models \varphi_{i}(\bar{b})$.
3. a) Let T be a complete theory in a countable language L that has an infinite model. Prove that T is ω-categorical iff all models of T realize precisely the same n-types for each $n \in \omega$.
b) Let L be a countable language and let $\boldsymbol{\alpha}$ be an infinite, countable, saturated L-structure. Prove that there is a proper elementary extension \mathfrak{B} of \mathfrak{A} that is isomorphic to \mathfrak{A}.
4. a) Let T be a theory in a language $L \supseteq\{S, \overline{0}\}$ that contains only finitely many non-logical symbols. Assume that every recursive relation is representable in T. Prove that T is undecidable.
b) Let L be a countable language and let $L^{\prime}=L \cup\{c\}$, where c is a constant symbol not in L. Let Σ be a set of sentences of L, let $T=C n_{L}(\Sigma)$ and let $T^{\prime}=C n_{L^{\prime}}(\Sigma)$. Prove that T is undecidable iff T^{\prime} is undecidable.
5. a) Let $E \subseteq \omega \times \omega$ be r.e. Assume that E is an equivalence relation on ω and assume that $C \subseteq \omega$ is an r.e. set that contains exactly one element from each E-class. Prove that E is recursive.
b) Let $A \subseteq \omega$ be non-empty. Carefully prove that A is the domain of some partial recursive function iff A is the range of some total recursive function.
6. a) Let A be a non-empty; proper subset of ω. Assume that A is recursive. Prove that there are numbers $a \in A$ and $b \in(\omega \backslash A)$ such that $W_{a}=W_{b}$.
b) Let X be a non-empty subset of ω. Assume that X is r.e. Let $I=$ $\left\{e \in \omega: W_{e}=X\right\}$. Prove that every r.e. subset A of ω is many-one reducible to I.

DEPARTMENT OF MATHEMATIC'S INIVERSITY OF MARYLAND GRADUATE WRITTEN EXAM

August, 1998
LOGIC. (Ph.D./M.A. version)

1. a) Let T be a theory of L and let σ be a sentence of L. Assume that for every model \mathfrak{a} of $T, \mathfrak{a} \mid=\sigma$ iff A is finite. Prove that there is some $n \in w$ such that every model of T with at least n elements is infinite.
b) Let a be a proper elementary extension of $(\omega,<)$. Prove that there is an infinite secuence $\left\{a_{n}\right\}_{n \in w}$ of elements of A such that $a_{n+1}<{ }^{n} a_{n}$ holds for all $n \in u$.
2. a) Let 2 be an infinite L-structure. Assume that for every formula $\varphi(x)$ of L, either φ^{2} is finite or $(\neg y)^{2}$ is finite. Prove that there is exactly one complete l-type $\Gamma(x)$ consistent with T that can be realized by infinitely many elements in some model of T.
b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be a t.ype consistent with T. Assume that Φ is omitted in some model of T. Prove that there is another model of T in which Φ is realized by infinitely many elements.
3. a) Let T be a complete theory in the language $L=\{+, \cdot,<, S, \overline{0}\}$ such that $Q \subseteq T$ but $(\omega,+\cdots<, S, 0) \not \vDash T$. Prove that there is some formula $\rho(x)$ of L such that $T \vDash \exists \cdot x \varphi(x)$ but $T \vDash \neg \varphi(\bar{n})$ for every $n \in \omega$.
b) Let, at be the countalsle model of an w-categorical theory in a countable language l. Prove that at has a non-trivial automorphism.
4. a) Prove that every infinite r.e. $A \subseteq w$ contains an infinite recursive subset.
b) Let $R \subseteq \omega \times \omega$ be r.e. and satisfy the following conditions:

$$
\bigcup_{k \in \infty} R_{k}=\infty \quad \text { and } \quad R_{k} \cap R_{l}=\emptyset \text { whenever } k \neq l \text {. }
$$

Prove that R is recursive. (Recall that $R_{k}=\{l: R(k, l)$ holds $\}$).
5. a) Let $\mathbb{X} \subseteq u$ be r.e. but not recursive. Let $\hat{p}(x)$ be a Σ-formula in the language $L=\{+, \cdot,<, S, \overline{0}\}$ that defines X in $(\omega,+, \cdot,<, S, 0)$. Prove that there is some consistent theory $T \supseteq Q$ such that $T \vdash \varphi(\bar{n})$ for some $n \notin X$.
b) Prove that there is a partial recursive function f that cannot be extencled to a total recursive function (i.e., there is no total recursive function g such that $g(k)=f(k)$ whenever $f(k)$ is clefined).
6. a) Prove that there is some $\epsilon \in \omega$ such that $\{e\}(2 \epsilon)=3 \epsilon+1$.
b) Let $A=\{\lceil\sigma\rceil: \sigma$ is a sentence of $L=\{+, \therefore,<, \overline{0}\}$ and $\vDash \sigma\}$. Prove that th is a complete r.e. set.

1. a) Let I be a countable language containing at least the binary relation symbol E, and let T be a theory of I so that E is an equivalence relation on A for every modelAof T. Assume that whenever A is a model of T and B is an elementary extension of A then every element of (B - A) has Its $E^{-\frac{B}{-}}$-class contained in (B - A). Prove that there is some integer n such that in every model A of T every $E^{\text {A }}$-class has size $<\mathrm{n}$.
b) Let T be a consistent theory in the countable language L and let $\Phi(x)$ and $\Psi(x)$ be types consistent with T. Assume that for every model \underline{A} of I we have $\Psi^{A}=A-\Phi^{\underline{A}}$. Prove that there is some formula $\varphi(x)$ such that $\Phi^{\underline{A}}=\varphi^{\underline{A}}$ for every model \underline{A} of T.

Let T be a complete theory in a countable language L and let $\bar{\Phi}(x)$ be a complete type of T. Assume that T has models \underline{A} and \underline{B} so that $\left|\Phi^{A}\right|=1$ and $\left|\Phi^{B}\right|=2$ 。
a) Prove that T has a model omitting $\bar{\Phi}$.
b) Prove that T has a model \subseteq so that Φ^{C} is infinite.
3. a) Prove that ($\omega,+$) has no proper elementary substructures.
b) Let T be a complete ω-categorical theory in a countable language. Prove that there is an integer n such that for every formula $\varphi(x)$ and every model $\underset{A}{A}$ of T, if φ^{A} is finite than $\left|\varphi^{A}\right|<n$.
4. a) For any $R \subseteq \omega \times \omega$ we define $R_{k}=\{1: R(k, l)$ holds $\}$. Assume that R is re. and $\bigcup_{k \in \omega} R_{k}=\omega$. Prove that there is some recursive $S \subseteq R$ such that $\bigcup_{k \in \omega} S_{k}=\omega$ and further $S_{k} \cap S_{l}=\varnothing$ whenever $k \neq 1$.
b) Let $A, B \subseteq \omega$ and assume that B is re. but not recursive and that $B \leqslant m$ A. Prove that A contains an infinite re. subset.
5. a) Prove that $\left\{e: W_{e} \neq \omega\right\} \leqslant m\{e: W e$ is finite\}.
b) Let A_{n} be arbitrary subsets of ω for every n in ω. Prove that there is some $B \subseteq \omega$ such that $A_{n} \leqslant{ }_{T} B$ for every n.
6. a) Prove that $R E C=\left\{e: w_{e}\right.$ is recursive $\}$ is \sum_{3}^{0}.
b) Prove that $A \leqslant T\left\{\Gamma^{\top}: \underline{N} \vDash \sigma\right\}$ for every arithmetic $A \subseteq \omega$, where N is the standard model of arithmetic on the natural numbers.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION August 1997

LOGIC

1. a) Let L be a language containing at least the binary relation symbol E. Let A be an L-structure in which E is interpreted as an equivalence relation on the universe. Assume that every element of every elementary extension of A belongs to the E-class of some element of A. Prove that there are just finitely many E-classes in A.
b) Let L and L^{\prime} be languages with $L \subseteq L^{\prime}$. Let T^{\prime} be an L^{\prime}-theory, and let A be an L-structure. Assume that there is no model of T^{\prime} whose L reduct is elementarily equivalent to \underline{A}. Prove that there is some L-sentence σ such that $A \neq \sigma$ and $T^{\prime} \vDash \neg \sigma$.
2. a) Let T be a complete theory of a language L and let $\Phi(x)$ be an L type. Assume that Φ is realized by at most one element in every model of T. Prove that there is some formula $\varphi(x)$ such that $\Phi^{\underline{A}}=\varphi^{\underline{A}}$ for every model A of T.
b) Let A be the countable model of an ω-categorical theory in a countable language L. Let X be a subset of A fixed by all automorphisms of A (that is, if $a \in X$ then $h(a) \in X$ for every automorphism h of A). Prove that X is definable in A by some L-formula. (You may assume that if $(\underline{A}, a) \equiv(\underline{A}, b)$ then $(\underline{A}, a) \cong(\underline{A}, b)$, and also the Ryll-Nardzewski characterization of ω-categorical theories).
3. a) Prove that $T h((Z,+))$ does not have a countable ω-saturated model.
b) Let L be a countable language containing at least a binary relation symbol E. Let T be an L-theory stating (among other things) that E is an equivalence relation on the universe. Assume that T has a model A with the property that every L-formula $\varphi(x)$ satisfiable on A is satisfiable by some element of A from a finite E-class. Prove that T has a model in which all E-classes are finite.
4. a) Let R be a binary relation on ω which is r.e. but not recursive. Assume that $R_{k} \cap R_{l}=\varnothing$ for all $k \neq 1$ (where $R_{k}=\{n: R(k, n)$ holds $\}$). Prove that $\bigcup_{k \in \omega} R_{k}$ is not recursive.
b) Let $A=\{\Gamma \sigma\urcorner: Q \mid \sigma\}$ where Q is the theory of the language of arithemetic used in undecidability results. Prove that every r.e. set of natural numbers is many-one reducible to A.
5. a) Assume $X \subseteq \omega$ is such that $\left\{e: W_{e}=\omega\right\} \subseteq X$ and $\left\{e: W_{e}=\phi\right\} \cap X=\phi$. Prove that X is not recursive.
b) Prove that $B=\{e:\{e\}(2 e)=3\}$ is a complete r.e. set.
6. a) Assume that $B \subseteq \omega$ is infinite but contains no infinite r.e. subset. Assume that A is r.e. and $A \leqslant m$. Prove that A is recursive.
b) Recall that $C O F=\left\{e:\left(\omega-W_{e}\right)\right.$ is finite $\}$ Prove that COF is r.e. in \varnothing '

LOGIC

1. a) Prove that $(Z,<)$ has no proper elementary submodels.
b) Let T be a complete theory in a countable language L containing (at least) a binary relation symbol E such that in every model of T, E is interpreted as an equivalence relation on the universe. Assume that in every \boldsymbol{W}-saturated model of T there is exactly one infinite E-class. Prove that there is some integer n such that in every model of T every E-class with > n elements is infinite.
a) Let T be a consistent theory in a countable language L. Assume that for all formulas $\varphi(x)$ of L we have
$\mathrm{T} \vDash \forall \mathrm{x} \varphi(\mathrm{x})$ iff $\mathrm{T} \neq \varphi(\mathrm{c})$ for all constants c of L . Prove that T has a model A such that $A=\left\{c^{A}: c \in L\right\}$.
b) Let A be any L-structure and assume that A realizes exactly three different complete types. Show that the same is true for every L-structure B elementarily equivalent to \mathbb{A}.
2. a) Let T be a complete theory in a countable language L and let A be a countable atomic model of T. Assume that a and b are elements of A with the same complete type. Prove that A has an automorphism f such that $f(a)=b$.
b) Let T be a complete theory in a countable language L. Assume there are only finitely many complete types $\Phi(x)$ in a single variable x consistent with T . Prove that there are only finitely many formulas $\varphi(x)$ of L up to equivalence with respect to T.

$$
\text { logic -- page } 2
$$

4. a) Let A and B be disjoint r.e. sets of natural numbers, and assume neither of them is recursive. Prove that ($A \cup B$) is not recursive.
b) Prove that any theory T with an r.e. set of axioms also has a recursive set of axioms.
5. a) Let T be a theory in a countable language L and assume that $\{n \in \omega: T$ has a model of cardinality $n\}$ is not recursive. Prove that T is undecidable.
b) Let T be a consistent recursively axiomatizable theory in the usual language for arithmetic on the natural numbers. Assume that X is weakly representable in T by $\varphi(x)$ and that X is not recursive. Prove that there is some consistent recursively axiomatizable theory T ' containing T such that X is not weakly representable in T^{\prime} by $\varphi(x)$.
6. a) Prove that there are r.e. subsets A and B of ω which are disjoint but there is no recursive set C with $A \subseteq C$ and $(B \cap C)=\varnothing$
b) Prove that $\{e: W e$ is infinite $\} \leqslant_{m}\left\{e: W_{e}=\omega\right\}$. [Hint: first define a partial recursive function $g(e, x)$ which converges iff $\{e\}(y)$ converges for some $y>x]$
7. a) Let \underline{A} be an L-structure and let $\varphi(x)$ be a formula of L. Prove that $\varphi^{\underline{A}}$ is finite iff $\rho^{\underline{A}}=\varphi^{\underline{B}}$ for every elementary extension B of A.
b) Let T be a complete theory in a countable language L, let A be an ω-saturated model of T, and let $\Phi(x)$ and $\Psi(x)$ be L types. Assume that $\Psi \underline{A}=A-\Phi^{A}$. Prove that there is some formula $\varphi(x)$ of L such that $\Phi^{A}=\varphi^{A}$.
8. a) Let T be a countable language whose non-logical symbols include the binary relation <. Let T be a consistent theory of I such that $<\frac{A}{}$ is a linear order of A for every model A of T. Assume that whenever \underline{A} is a model of T there are a, b in A such that the $<A_{\text {-interval }}$ between a and b is infinite. Prove that there is some formula $\varphi(x, y)$ of L consistent with T such that whenever A is a model of T and $\underline{A}_{A} \neq \varphi(\bar{a}, \bar{b})$ then the $<\frac{A}{}$-interval between a and b is infinte.
b) Let L and L^{\prime} be languages with $L \subseteq L^{\prime}$, let T_{1}^{\prime} and T_{2}^{\prime} be theories of L^{\prime} which contain precisely the same sentences of L, and let T be a theory of L. Prove that some model of T can be expanded to a model of T_{1}^{\prime}, iff some model of T can be expanded to a model of $T_{2}{ }^{\prime}$.
9. a) Let \underline{A} be any L-structure, let $L^{\prime}=L(A)$ and let $T^{\prime}=\operatorname{Th}\left(\underline{A} A^{\prime}\right.$. Let \underline{B}^{\prime} be an L^{\prime}-structure which is a model of T^{\prime}. Assume that \underline{B}^{\prime} is an atomic model of T^{\prime}. Prove that B, the L-reduct of B^{\prime}, is isomorphic to A.
b) Let T be a complete ω-categorical theory in a countable language L. Prove that there is some integer k such that for every formula $\varphi(x)$ of L and every model \underline{A} of T, if $\left|\varphi^{A}\right|>k$ then $\varphi^{\underline{A}}$ is infinite.
10. a) Assume that $R \subseteq \omega_{x} \omega i s$ r.e. and defines a strict linear order on ω with no last element (so $R(k, k)$ fails for all k). Prove that there is a strictly increasing recursive function f such that $R(E(k), f(k+1))$ holds for all k.
b) Let the non-logical symbols of L be $\{+, \cdot, c, s, \overline{0}\}$ and let N be the standard L-structure for arithmetic on the natural numbers. Prove that there is no listing $\left\{\varphi_{n}(x): n \in \omega\right\}$ of all the formulas of L with x free such that $X=\left\{n: \underline{N} \vDash \varphi_{n}(\bar{n})\right\}$ is recursive.
11. a) Let L have as its only non-logical symbol the binary relation E and let T_{O} be the L-theory asserting that E is an equivalence relation on the universe with infinitely many classes. Prove that there is a complete L-theory T which extends T_{O} and is undecidable.
b) Let A be a non-empty r.e. subset of ω and $\operatorname{define} I=\{e: A=W e\}$. Prove that every r.e. set B is many-one reducible to I.
12. a) Let L be a language with finitely many non-logical symbols and let $L^{\prime}=L U\{c\}$ where c is an individual constant symbol not in L. Let A^{\prime} be a strongly undecidable $L^{\prime}-$ structure and let A be its reduct to L. Prove that $T h(\mathbb{A})$ is an undecidable L-theory.
b) Let REC $=\{e: W e$ is recursive $\}$. Prove that REC is r.e. in $\phi^{\prime \prime}$.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION

January 1996
LOGIC

1. a) Let L be a language whose non-logical symbols include the binary relation E. Let T be a theory of L such that $E A$ is an equivalence relation on A for every model A of T. Assume that in every model A of T there is exactly one infinite E-class. Prove that there is some n in ω such that in every model A of T all finite E classes have at most n elements.
b) Let T be a complete theory of some language L and let $\Phi(x)$ be an L-type consistent with T. Assume that Φ is omitted on some model of T. Prove that Φ is realized in some model of T by at least two different elements.
2. a) Let T be a complete theory in a countable language L and let A be the prime model of T. Let $\bar{\Phi}(x)$ be any L-type. Prove that there is some L-type $\Psi(x)$ such that $\Psi \underline{A}=A-\Phi \underline{A}$.
b) Let L be a countable language and let $L^{\prime}=L U\left\{c_{1}, \ldots, c_{k}\right\}$ where c_{\mid}, \ldots, c_{k} are individual constants not in L. Let T and T be complete theories of L and I^{\prime} respectively and assume $T \subseteq T^{\prime}$.

Prove that T has a countable universal model iff T ' has a countable universal model.
3. a) Let L be a countable language. An L-structure A is said to be locally finite iff every element of A belongs to a finite L-definable subset of A. Let T be a complete L-theory and assume that no model of T is locally finite. Prove that there is some L-formula $\varphi(x)$ consistent with T such that for every L-formula $\psi(x)$ and every madol a nf T in A mir A ic infinite nrovider it ig mot emnty
b) Let T be a complete theory in a countable language L. Let A be a countable model of T which is not prime and let $\Phi(x)$ be a type omitted on A. Prove that there is some countable model of T which also omits Φ but is not isomorphic to A. [Warning: You cannot assume that T has a prime model.]
4. a) Assume that A and B are r.e. subsets of ω such that $A \cup B$ is recursive. Prove that there are recursive sets $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ such that $A \cup B=A^{\prime} \cup B^{\prime}$.
b) Recall that if $\varphi(x)$ is a Σ-formula (in the language for arithmetic on the natural munbers) and if $Q f \exists x \varphi(x)$ then $Q f \varphi(\bar{n})$ for some n in ω. Prove that there is no total recursive function f such that whenever $\varphi(x)$ is a \sum-formula and $Q \vdash \exists x \varphi(x)$ then Q $\rho(\overline{f(k)})$ where $k=\lceil\varphi\urcorner$.
[Hint: Let $\psi(x, y)$ be a Σ-formula representing in Q the relation " x is the Godel number of a proof from Q of the sentence whose Godel number is $y^{\prime \prime}$ and consider the formulas $\left.\rho_{1}(x)=\psi(x, \bar{I}).\right]$
5. a) Given a language L_{1} let $L_{2}=L_{1} \cup\{c\}$ where c is an individual constant not in L_{1}. Let T_{2} be a finitely axiomatizable essentially undecidable theory of L_{2} and let $T_{1}=T_{2} \cap S_{L_{1}}$. Prove that T_{1} is also essentially undecidable.
b) Prove that $\left\{e: W_{e} \neq \omega\right\} \leqslant_{m}\left\{e: W_{e}\right.$ is finite $\}$. [Hint: First define a partial recursive function $f(e, x)$ which converges iff $\{e\}(y)$ converges for all $y<x$.
6. a) Let A and B be subsets of ω. Prove that B is $A-r$.e. iff $B \leqslant m A^{\prime}$ where A^{\prime} is the jump of A.
b) Let $C=\{\Gamma \sigma\urcorner: \underline{N} \vDash \sigma\}$ where N is the standard model of arithmetic on the natural numbers. Prove that $A \leqslant T C$ for all arithmetic sets A, and use this to conclude that C is not arithmetic.

DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF MARYIAND
 GRADUATE WRITTEN EXAMINATION
 August 1995

LOGIC

1. a) Given a theory T and a sentence θ of L, assume that for every model A of $T, A \quad=\theta$ iff A is finite. Prove that there is some $n \in \omega$ such that for every model A of $T, A \quad F \theta$ iff A has at most n elements.
b) Let A and B be L-structures and assume that B is a proper elementary extension of A. Asswine further that there is an t-fomula $\varphi(x, y)$ such that $A=\left\{b \in B: B_{B} \neq \varphi\left(\bar{b}, \bar{b}_{0}\right)\right\}$ for some b_{0} in B. Prove that $\mathrm{b}_{0} \notin \mathrm{~A}$.
2. a) Let $T=\operatorname{Th}((\mathbb{Q},+, \cdot,<, 0,1))$. Prove that T does not have a countable saturated model.
b) Let T be a complete L-theory, let L ' be a language containing L and let T^{\prime} be an L^{\prime}-theory containing T. Assume that A is a model of T which has an elementary extension which can be expanded to an L^{\prime} structure which is a model of T^{\prime}. Prove that every model \underline{B} of T has an elementary extension which can be expanded to a model of T^{\prime}.
3.

Let L be a countable language containing (at least) a binary relation symbol \leqslant and individual constants c_{n} for all $n \in \omega$. Let T be a complete theory of L containing (at least) the axioms that \leqslant is a linear order of the universe and $c_{n} \leqslant c_{n+1}$ for all $n \in \omega$. Call a model A of T standard if for every $a \in A$ there is some $n \in \omega$ such that $A_{A}=\bar{a} \leqslant C_{n}$. Let A^{*} be an ω-saturated model of T.
a) Prove that if A^{*} is standard then there is some $n \in \omega$ such that

$$
\underline{A}^{*} \neq \forall x\left(x \leq c_{n}\right)
$$

b) Assume that for every L-formula $\varphi(x)$ such that $A^{*}=\exists x \varphi(x)$ there is some $n \in \omega$ such that $A^{*} \vDash \exists x\left[\varphi(x) \wedge x \leqslant c_{n}\right]$. Prove that T has a standard model.
4.

Let T be a recursively axiomatized extension of the theory Q which is true on $\underline{N}=(\omega,+, \leftarrow,<, 0, s)$. Let $R \subseteq \omega x \omega$ be representable in T by the \sum-formula $\varphi(x, y)$. Let $X=\{k: \exists 1 R(k, 1)$ holds $\}$.
a) Show X is weakly representable in T by $\exists y \quad \varphi(x, y)$.
b) Assume X is not recursive. Prove that there is some $k \in \omega$ such that $T \neq \neg \varphi(\bar{k}, \bar{I})$ for all $l \in \omega$ but $\underset{\sim}{\wedge} \forall Y \neg \varphi(\bar{k}, v)$.
5. a) Let \mathcal{F} be a set of partial recursive functions of one argument, and let $I=\{e:\{e\} \in \mathcal{F}\}$. Prove that $I \neq m(W-I)$.
b) Let A and B be subsets of ω. Assume B is r.e. but not recursive and that $B \leqslant m$ A. Prove that A contains an infinite r.e. subset.
6. a) Let L_{0} be the language with no non-logical symbols.
i) Show that there is a theory T_{0} of L_{0} which is undecidable.
ii) Can there be an undecidable L_{0}-theory T_{0} which has only finite models? Explain.
b) Let X be an r.e. subset of ω. Let $I=\left\{e: W_{e}=x\right\}$. Prove that I is Π_{2}.

