January 2011

- 1. (a) Let T be any L-theory and suppose that $\{\varphi_n(x) : n \in \omega\}$ are L-formulas such that $T \models \forall x(\varphi_n(x) \to \varphi_{n+1}(x))$ for all $n \in \omega$. Suppose further that every element of every model of T realizes some φ_n . Prove that $T \models \forall x \varphi_n(x)$ for some $n \in \omega$.
 - (b) Let 𝔄 be an L-structure, let a ∈ A, and assume that a satisfies some complete L-formula in 𝔄. Let L' = L ∪ {c}, and let 𝔄' be the expansion of 𝔄 to an L'-structure in which c^{𝔄'} = a. Suppose that b ∈ A and that b satisfies a complete L'-formula in 𝔄'. Prove that the pair ab satisfies a complete L-formula in 𝔄.
- 2. A theory T is called *model complete* if every embedding of models of T is an elementary embedding.
 - (a) Suppose that $L = \{E\}$ and T is the *L*-theory asserting that E is an equivalence relation with infinitely many classes, and each class is infinite. Prove that T is model complete.
 - (b) Prove that if T is model complete, then for every L-formula $\varphi(x_1, \ldots, x_n)$, there is an existential L-formula $\psi(x_1, \ldots, x_n)$ such that

$$T \models \forall \overline{x}(\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$$

- 3 (a) Suppose $L = \{U, \leq\}$, where U is a unary predicate and \leq is binary. Let \mathfrak{A} be the L-structure with universe \mathbb{R} (the real numbers), where $U^{\mathfrak{A}} = \mathbb{Q}$ (the rationals) and $\leq^{\mathfrak{A}}$ is the usual ordering on \mathbb{R} . Find, with proof, all countable models of $Th(\mathfrak{A})$, up to isomorphism.
 - (b) Prove that if T is ω -categorical and \mathfrak{A} is the infinite, countable model, then there is $\mathfrak{B} \preceq \mathfrak{A}$ with $\mathfrak{B} \neq \mathfrak{A}$.

- 4. (a) Prove that $Th(\mathfrak{N})$, where $\mathfrak{N} = (\omega, +, \cdot, 0, s)$, is not model complete (see Problem #2).
 - (b) Assume that PA + Con(PA) is consistent. Use Gödel's Second Incompleteness Theorem to conclude that $PA + \neg Con(PA)$ is consistent.
- 5 (a) Prove that there is an integer m so that $W_m = \{m\}$.
 - (b) Let $Z = \{e : W_e \neq \emptyset\}$. Prove that Z is a many-one complete, recursively enumerable subset of ω .
- 6. (a) Determine (with proof) whether or not $\mathbf{TOT} = \{e : \{e\} \text{ is total}\}$ is Turing equivalent to $\mathbf{FIN} = \{e : W_e \text{ is finite}\}$.
 - (b) Demonstrate that $\{e: W_e \text{ is recursive}\}$ is an arithmetic subset of ω .

August, 2010

- 1. (a) Suppose T is a theory in a language with only finitely many non-logical symbols. Prove that if T has infinitely many non-isomorphic models, then T has an infinite model.
 - (b) Suppose $L \subseteq L'$ are languages, \mathfrak{A} is an *L*-structure, and *T'* is a consistent *L'*-theory. Additionally, assume that there is no model of *T'* whose reduct to *L* is elementarily equivalent to \mathfrak{A} . Prove that there is an *L*-sentence θ such that $\mathfrak{A} \models \theta$, but $T' \models \neg \theta$.
- 2. (a) Let $L = \{E\}$, where E is a binary relation, and let T be the L-theory asserting that E is an equivalence relation with infinitely many classes, and that each class is infinite. Prove that T is model complete, i.e., for all models $\mathfrak{A}, \mathfrak{B} \models T, \mathfrak{A} \subseteq \mathfrak{B}$ implies $\mathfrak{A} \preceq \mathfrak{B}$.
 - (b) Let 𝔅 be any proper elementary extension of 𝔅 = (ω, +, ·, <). An *initial substructure* is a substructure (not necessarily elementary)
 𝔅 ⊆ 𝔅 in which the set B is a <-initial segment of A. Prove that for any a ∈ A there is an initial substructure 𝔅 ⊆ 𝔅 with a ∈ B, but B ≠ A. [Possible hint: Recall that there is an L-formula φ(x, y, z) such that k^ℓ = m if and only if 𝔅 ⊨ φ(k, ℓ, m) for all k, ℓ, m ∈ ω.]
- 3. Suppose that T is a complete theory in a countable language.
 - (a) Prove directly from the definitions that if $\mathfrak{A} \models T$ is countable and atomic, then it embeds elementarily into every model of T. It is *not* sufficient to simply quote theorems from class.
 - (b) Suppose that some atomic $\mathfrak{A} \models T$ has a proper, elementary substructure. Prove that T has an uncountable, atomic model.

- 4. (a) Assume that $R \subseteq \omega^2$ is recursively enumerable and that the sets $\{R_k : k \in \omega\}$ are all infinite and are pairwise disjoint. Prove that there is a recursive set $C \subseteq \omega$ that intersects each R_k in exactly one point.
 - (b) Prove that every decidable theory in a language with finitely many non-logical symbols has a complete, decidable extension.
- 5. Let Fm_x denote the set of formulas in the language $L = \{+, \cdot, <, s, 0\}$ whose free variables is precisely $\{x\}$. For each $\varphi(x) \in Fm_x$, let $d\varphi$ denote the sentence $\exists x(x = \lceil \varphi \rceil \land \varphi(x))$. Let $f : \omega \to \omega$ be the (recursive) function

$$f(n) = \begin{cases} \lceil d\varphi \rceil & \text{if } n = \lceil \varphi \rceil \text{ for some } \varphi \in Fm_x \\ 0 & \text{otherwise} \end{cases}$$

and let T be any theory in which f is represented.

- (a) Prove that for every formula $\theta(x) \in Fm_x$ there is a sentence ψ such that $T \vdash \psi \leftrightarrow \theta(\ulcorner \psi \urcorner)$.
- (b) Prove that if T is a consistent theory in which every recursive function is represented, then T is undecidable.
- 6. (a) Prove that $\{k \in \omega : \varphi_{2k}(3k) \uparrow\}$ is Π_1 but not Δ_1 .
 - (b) Prove that **INF** is many-one reducible to **ZERO**, where **INF** = $\{e \in \omega : W_e \text{ is infinite}\}$ and **ZERO** = $\{e \in \omega : \forall n \varphi_e(n) = 0\}$.

January 2010

LOGIC (Ph D /M A version)

- 1. (a) Prove that the class of cyclic groups is not an elementary class. (Recall that a group G is cyclic iff there is some $g \in G$ such that $G = \{g^n : n \in \mathbb{Z}\}$.)
 - (b) Prove that every countable linear order embeds isomorphically into (Q, ≤).
- 2 (a) Let $L_1 = \{U\}$, where U is a unary predicate symbol. Prove that for any L_1 -sentence θ , if θ is true in every finite L_1 -structure, then θ is valid.
 - (b) Let $L_2 = \{R\}$, where R is a binary predicate symbol. Find (with proof) an L_2 -sentence θ such that θ holds in every finite L_2 -structure, but θ is not valid.
- 3 (a) Prove that no complete theory T extending Peano's Axioms can have a countable, saturated model.
 - (b) Let T be a complete theory in a countable language, and let Γ(x), Φ(x) be 1-types such that (1) there is a model of T omitting Γ and (2) every model of T that omits Γ realizes Φ. Prove that Φ is realized in every model of T.

1

- 4. (a) Prove that there is a model \mathfrak{A} of Peano's Axioms and a formula $\theta(x)$ such that $\mathfrak{A} \models \exists x \theta(x)$, yet $\mathfrak{A} \models \neg \theta(\overline{n})$ for every $n \in \omega$.
 - (b) Suppose L has only finitely many nonlogical symbols, and T is a finitely axiomatizable L-theory such that for any L-sentence θ, if θ is not true in every model of T, then θ is false in some finite model of T. Prove that T is decidable.
- 5. (a) Prove that there is no total recursive $f: \omega \to \omega$ such that for all $e \in \omega$, if W_e is finite, then $W_e \subseteq \{0, 1, \dots, f(e)\}$.
 - (b) Construct an r.e. subset $A \subseteq \omega$ such that $\omega \setminus A$ is infinite, but $A \cap B$ is nonempty for every infinite, r.e. set B.
- 6 (a) Give an example (with justifications) of two sets $A, B \subseteq \omega$ such that A is Turing reducible to B, but A is not many-one reducible to B.
 - (b) Exhibit (with proof) two disjoint, r.e. sets A and B that are recursively inseparable, i.e., there is no recursive C such that $A \subseteq C$, but $B \cap C = \emptyset$.

August 2009

- 1. Suppose that $L \subseteq L'$ are languages, \mathfrak{A} is an *L*-structure, and T' is an *L'*-theory such that $T' \cup Th_L(\mathfrak{A})$ is consistent.
 - (a) Prove that there is an L'-structure $\mathfrak{B}' \models T'$ such that the L-reduct, $\mathfrak{B} = \mathfrak{B}'|_L$ elementarily extends \mathfrak{A} .
 - (b) Prove that there is a model of T' realizing every 1-type $\Gamma(x)$ in the language L consistent with $Th(\mathfrak{A})$.
- 2. Let D(x, y) denote the divisibility relation on ω , i.e., D(n, m) if and only if n divides m. Let $\mathfrak{A} = (\omega, D)$.
 - (a) Prove that the set of primes is definable in \mathfrak{A} .
 - (b) Prove that \mathfrak{A} has a nontrivial automorphism, i.e., an isomorphism $f: \mathfrak{A} \to \mathfrak{A}$ such that $f(n) \neq n$ for at least one $n \in \omega$.
- 3. (a) Prove that if \mathfrak{A} is an infinite, countable, saturated model then there is a countable, saturated $\mathfrak{B} \preceq \mathfrak{A}$ with $\mathfrak{B} \neq \mathfrak{A}$.
 - (b) Let $\mathfrak{A}_0 \preceq \mathfrak{B}_0 \preceq \mathfrak{A}_1 \preceq \mathfrak{B}_1 \preceq \mathfrak{A}_2 \preceq \ldots$ be an elementary chain of models where each \mathfrak{A}_n is countable and saturated, and each \mathfrak{B}_n is not saturated. Prove that $\bigcup_{n \in \omega} \mathfrak{B}_n$ is countable and saturated.

- 4. (a) Let $\mathfrak{N} = (\omega, +, \cdot, 0, 1)$ denote the standard model of arithmetic, and let PA denote Peano's axioms. Prove that there is a countable $\mathfrak{A} \models PA$ such that $\mathfrak{N} \subseteq \mathfrak{A}$, but $\mathfrak{N} \not\preceq \mathfrak{A}$.
 - (b) Given a binary function $g: \omega \times \omega \to \omega$, let g^* be the partial function defined by

$$g^*(x) = \left\{ egin{array}{c} y & ext{if, for some } n, \ g(m,x) = y \ ext{for all } m \geq n \ \uparrow & ext{otherwise} \end{array}
ight.$$

Construct a (total) recursive $g: \omega \times \omega \to \omega$ such that the domain of g^* is a non-recursively enumerable set, e.g., \overline{K} .

- 5. Let $E(x, y) = x^y$ denote the exponential function.
 - (a) Prove that the graph of multiplication is definable in the structure (ω, E) .
 - (b) Prove that the structure (ω, E) is strongly undecidable.
- 6. For $X \subseteq \omega$, let $S_X = \{e \in \omega : W_e = X\}$
 - (a) Prove that S_X is Π_3 for every recursive set X.
 - (b) Find (with proof) a recursive $X \subseteq \omega$ such that S_X is not Π_3 complete.

January 2009

LOGIC (Ph.D./M.A. version)

- 1. (a) Let \mathfrak{A} and \mathfrak{B} be elementarily equivalent structures in the same language L. Prove that there is an L-structure \mathfrak{C} and elementary embeddings $f : \mathfrak{A} \to \mathfrak{C}$ and $g : \mathfrak{B} \to \mathfrak{C}$.
 - (b) Let $L = \{<, U\}$, where U is unary and < is binary. Let \mathfrak{A} be any L-structure with universe the rationals \mathbb{Q} , where $<^{\mathfrak{A}}$ is interpreted as the usual ordering on \mathbb{Q} and $U^{\mathfrak{A}}$ is any dense, codense subset, e.g.,

$$U^{\mathfrak{A}} = \left\{ \frac{n}{2^k} : n, k \text{ are integers} \right\}$$

Prove that $Th(\mathfrak{A})$ is ω -categorical.

- 2. (a) Let L = {+, ·, 0, 1} and let 𝔑 = (ω, +, ·, 0, 1) be the standard model of arithmetic. Let φ(x) be any L-formula defining the set of prime numbers in ω. Prove that if 𝔄 is an elementary extension of 𝔑 and 𝔅 ≠ 𝔑, then there is a ∈ A \ ω such that 𝔅 ⊨ φ(a).
 - (b) Prove that every model (even the uncountable ones) of an ω categorical theory in a countable language is atomic.
- 3. Let T be a complete theory in a countable language.
 - (a) Prove that if \mathfrak{A} is a countably universal model of T, then \mathfrak{A} has an ω -saturated elementary substructure.
 - (b) Prove that if 𝔄 is an infinite, countable, ω-saturated model of T, then 𝔄 has a nontrivial automorphism, i.e., an isomorphism f : 𝔄 → 𝔅 such that f(a) ≠ a for at least one a ∈ A.

- 4. Let $L = \{f\}$, where f is a binary function symbol, and let $Valid_L$ denote the set of valid sentences in this language.
 - (a) Prove that $Valid_L$ is not essentially undecidable.
 - (b) Find an *L*-sentence $\sigma \notin Valid_L$, yet σ holds in every finite *L*-structure.
- 5. (a) Suppose that every recursively enumerable set A is many-one reducible to a fixed set $B \subseteq \omega$. Prove that B contains an infinite, recursively enumerable subset.
 - (b) Let $A = \{e \in \omega : W_e \text{ is finite}\}$ and $B = \{e \in \omega : W_e \text{ is infinite}\}$. Prove that A is Turing reducible to B, but not many-one reducible to B.
- 6. (a) Prove or disprove: If a binary relation R is r.e. and $|R_k| \leq 2$ for each k, then R is recursive.
 - (b) Let A ⊆ ω be weakly represented, but not represented by a formula φ(x) with respect to Q. Prove that there is a consistent, recursively axiomatizable theory T ⊇ Q such that A is not weakly represented by φ(x) with respect to T.

(

August 2008

- 1. (a) Prove that if $\mathfrak{A} \preceq \mathfrak{B}$ and A is finite, then $\mathfrak{A} = \mathfrak{B}$.
 - (b) Suppose that \mathfrak{A} and \mathfrak{B} are structures in the same language L that satisfy the same universal sentences. Prove that there is an L-structure \mathfrak{C} into which both \mathfrak{A} and \mathfrak{B} embed isomorphically.
- 2. (a) Find (with proof) all automorphisms of the structure $\mathfrak{A} = (\mathbb{Z}, +)$.
 - (b) Recall that a countable A ⊨ T is ω-homogeneous iff for all n ∈ ω and all a₀,..., a_n, b₀,..., b_n ∈ A there is an automorphism h of A such that h(a_i) = b_i for all 0 ≤ i ≤ n whenever tp_A(a₀,..., a_n) = tp_A(b₀,..., b_n).
 Prove that if A and B are both countable, ω-homogeneous models of T, A embeds elementarily into B, and B embeds elementarily into A, then A ≅ B.
- 3. Let T be a complete theory in a countable language.
 - (a) Prove that if T does not have a prime model, then T has uncountably many nonisomorphic countable models.
 - (b) Let X be a countable set of 1-types such that for every finite $F \subseteq X$ there is a model $\mathfrak{A}_F \models T$ omitting every $\Phi \in F$. Prove that there is a model $\mathfrak{B} \models T$ omitting every $\Phi \in X$.

- 4. (a) Suppose that T is a recursively axiomatizable theory in a finite language L that has no infinite models. Prove that T is decidable.
 - (b) Let $L = \{+, \cdot, 0, s, <\}$ and let $Valid_L$ denote the set of valid *L*-sentences. Prove that $Valid_L$ is undecidable, but not essentially undecidable.
- 5. (a) Let T be any consistent, recursively axiomatizable extension of Robinson's Q and let $Thm_T = \{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$. Prove that Thm_T is weakly represented in Q, but is not represented in Q.
 - (b) Let PA denote Peano's Axioms. Use Gödel's 2nd Incompleteness Theorem to prove that if PA is consistent, then

$$PA \cup \{Con(PA + \neg Con(PA))\}$$

has a model.

- 6. Let $K = \{e \in \omega : \{e\}(e) \downarrow\}$ and $Even = \{e \in \omega : W_e = \{2n : n \in \omega\}\}.$
 - (a) Prove that there is an infinite, r.e. B such that K and B are recursively inseparable.
 - (b) Prove that $Even \leq_T 0''$.

January 2008

LOGIC (Ph.D./M.A. version)

- 1. (a) Let T be any theory in a language L that has an infinite model. Prove that T has a model \mathfrak{A} with an element $a \in A$ such that $a \neq c^{\mathfrak{A}}$ for every constant symbol $c \in L$.
 - (b) Suppose that \mathfrak{A} is a saturated model of $Th(\mathfrak{A})$, and that a complete 1-type $\Phi(x)$ is realized by only finitely many elements of \mathfrak{A} . Prove that there is a formula $\varphi(x) \in \Phi(x)$ such that φ is realized by only finitely many elements of \mathfrak{A} .
- 2. (a) Let L^{nl} = {+, ·, 0, 1, ≤}. Prove that any proper elementary extension 𝔅 ≻ (ℝ, +, ·, 0, 1, ≤) contains an element b ∈ B such that 𝔅_B ⊨ b̄ > r̄ for every r ∈ ℝ.
 - (b) Recall that a countable model A is ω-homogeneous iff for all n ∈ ω and all a₀,..., a_n, b₀,..., b_n ∈ A there is an automorphism h of A such that h(a_i) = b_i for all 0 ≤ i ≤ n whenever tp_A(a₀,..., a_n) = tp_A(b₀,..., b_n).

Prove that every countable model in a countable language has a countable, ω -homogeneous elementary extension.

- 3. Let $L^{nl} = \{E\}$, where E is a binary relation symbol. Let T be the theory asserting that E is an equivalence relation with exactly two classes, both of which are infinite.
 - (a) Prove that T is a complete L-theory.
 - (b) Prove that if \mathfrak{A} and \mathfrak{B} are models of T and $\mathfrak{A} \subseteq \mathfrak{B}$, then $\mathfrak{A} \prec \mathfrak{B}$.

- 4. (a) Suppose that T is a recursively axiomatizable theory with a model $\mathfrak{A} \models T$ that embeds elementarily into every model of T. Prove that T is decidable.
 - (b) Assume that $A \subseteq \omega$ is recursive, $R \subseteq \omega \times \omega$ is r.e., and that $\bigcup_{k \in \omega} R_k = A$. Prove that there is a recursive $S \subseteq R$ such that $\bigcup_{k \in \omega} S_k = A$.
- 5. Let $\mathcal{F} = \{ \text{all functions } f : \omega \to \omega \text{ such that } f(n+1) = nf(n) \text{ for all but finitely many } n \in \omega \}.$
 - (a) Prove that every $f \in \mathcal{F}$ is recursive.
 - (b) Prove that there is a recursive function g : ω → ω such that for every f ∈ F there is an N ∈ ω such that g(n) ≥ f(n) for every n ≥ N.
- (a) Let T be a consistent, recursively axiomatizable theory containing the axioms for Q. Prove that for every formula φ(x) of the language for Q there is a sentence σ such that T ⊢ σ ↔ φ(¯σ¬).
 - (b) Recall that $K = \{e : \{e\}(e) \downarrow\}$ and $\overline{K} = \omega \setminus K$. Prove that K is not many-one reducible to \overline{K} .

August 2007

- 1. a) Prove or disprove: $(\mathbb{Z}, <)$ has a proper elementary substructure.
 - b) Let $L^{nl} = \{E\}$ where E is a binary relation symbol. Let \mathfrak{A} be the countable *L*-structure in which $E^{\mathfrak{A}}$ is an equivalence relation such that $E^{\mathfrak{A}}$ has no infinite equivalence classes and for every $n \geq 1$ there is exactly one $E^{\mathfrak{A}}$ -class with exactly n elements. Prove that $Th(\mathfrak{A})$ has exactly one countable model with infinitely many infinite equivalence classes.
- 2. a) Let T be a theory in a language L. Assume that whenever θ_1 and θ_2 are universal sentences of L and $T \models (\theta_1 \lor \theta_2)$ then either $T \models \theta_1$ or $T \models \theta_2$. Prove that for any $\mathfrak{A}, \mathfrak{B} \models T$ there is some $\mathfrak{C} \models T$ such that both \mathfrak{A} and \mathfrak{B} can be embedded in \mathfrak{C} . [Recall that θ is universal iff it has the form $\forall x_1 \ldots \forall x_n \varphi$ where φ is an open formula]
 - b) Let T be an ω -categorical theory in a countable language L. Prove that every uncountable model of T is ω -saturated.
- 3. a) Let T be a complete theory in a countable language L. Let \mathfrak{A} be a countable ω_1 -universal model of T. Prove that there is some ω -saturated \mathfrak{B} such that $\mathfrak{B} \prec \mathfrak{A}$.
 - b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L-type. Assume that Φ is realized by at most two elements in every model of T. Prove that there is some formula $\varphi(x)$ of L such that for every $\mathfrak{A} \models T$, $\Phi^{\mathfrak{A}} = \varphi^{\mathfrak{A}}$.

- 4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. but not recursive and that $R_k \cap R_l = \emptyset$ for all $k \neq l$. Prove that $(\omega \setminus \bigcup_{k \in \omega} R_k)$ is infinite.
 - b) Prove that $\{ \ulcorner \sigma \urcorner : \sigma \text{ is an open sentence and } \mathfrak{N} \models \sigma \}$ is recursive.
- 5. a) Let $A, B \subseteq \omega$ be recursively inseparable r.e. sets. Assume that $A \leq_m C$ for some $C \subseteq \omega$. Prove that $(\omega \setminus C)$ contains an infinite r.e. subset.
 - b) Let f, g be total recursive functions of one argument. Let $I_f = \{e \in \omega : \{e\} = f\}$ and $I_g = \{e \in \omega : \{e\} = g\}$. Prove that $I_f \equiv_m I_g$.
- 6. a) Let $R \subseteq \omega \times \omega$ be r.e. Let $A = \{k \in \omega : R_k \text{ is cofinite}\}$. Prove that A is arithmetic.
 - b) Prove that there are infinitely many $e \in \omega$ such that $\{e\}(2e) = 3e$.

January 2007

LOGIC (Ph.D./M.A. version)

1. Let L be a countable language and let $\{T_n\}_{n\in\omega}$ be L-theories such that $T_n \subseteq T_{n+1}$ for all $n \in \omega$. Let $T^* = \bigcup_{n\in\omega} T_n$ and let $\Phi(x)$ be an L-type. Prove or disprove (with a counterexample) each of the following.

a) If each T_n has a model realizing Φ then T^* has a model realizing Φ .

b) If each T_n has a model omitting Φ then T^* has a model omitting Φ .

- 2. a) Let T be a theory in a language L and let \mathfrak{B} be an L-structure. Assume that whenever θ is a universal sentence of L and $T \models \theta$ then $\mathfrak{B} \models \theta$. Prove that \mathfrak{B} can be embedded in some model of T. [Recall that θ is universal iff it has the form $\forall x_1 \ldots \forall x_n \varphi$ where φ is an open formula]
 - b) Let T be a complete theory of L. Assume that T has some model which realizes just finitely many complete types in one variable. Prove that every model of T realizes just finitely many complete types in one variable.
- 3. a) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L-type. Assume that any two countable models of T omitting Φ , are isomorphic. Prove that every countable model of T omitting Φ is prime. [Warning: you are not given that T has a prime model]

b) Recall that a countable model \mathfrak{A} is ω -homogeneous iff for all $n \in \omega$ and all $a_0, \ldots, a_n, b_0, \ldots, b_n \in A$ there is an automorphism h of \mathfrak{A} such that $h(a_i) = b_i$ for all $0 \leq i \leq n$ whenever $tp_{\mathfrak{A}}(a_0, \ldots, a_n) = tp_{\mathfrak{A}}(b_0, \ldots, b_n)$.

1

Let T be a complete theory of a countable language L, and assume that $\mathfrak{A} \models T$ is countable, ω -homogeneous, and ω_1 -universal. Prove that \mathfrak{A} is ω -saturated.

- 4. a) Let $f: \omega \to \omega$ be a (total) function. Assume that there is some finite $X \subseteq \omega$ such that for all $n \in (\omega \setminus X)$ we have f(n+1) = f(n) + 1. Prove or disprove (with a counterexample): f is recursive.
 - b) Let T be a recursively axiomatizable theory containing the axioms for Q such that $\mathfrak{N} \models T$. Prove that there is some formula $\varphi(x)$ (of the language for Q) such that $T \vdash \varphi(\bar{n})$ for all $n \in \omega$ but $T \not\vdash \forall x \varphi(x)$.
- 5. a) Let $A \subseteq \omega$ be infinite and r.e. Prove that there are infinite recursive sets $B_0, B_1 \subseteq A$ such that $(B_0 \cap B_1) = \emptyset$.
 - b) Define sets $A, B \subseteq \omega$ such that A is r.e. in B but $(\omega \setminus A)$ is not r.e. in $(\omega \setminus B)$. [You must prove the sets you define have these properties]
- 6. a) Let $I = \{e : |W_e| = 1\}$. Prove that $A \leq_m I$ for every r.e. $A \subseteq \omega$.
- b) Prove that there is some $n \in \omega$ such that W_n is the set whose only element is n.

August 2006

LOGIC (Ph.D./M.A. version)

- 1. a) Prove or disprove: {1} is definable (by an *L*-formula) in the structure $(\mathbb{Q}, <, +)$ for the language *L* with $L^{nl} = \{<, +\}$.
 - b) Assume that $\{T_n : n \in \omega\}$ is a sequence of consistent theories in a language L such that $T_n \subseteq T_{n+1}$ for all $n \in \omega$ and $T_n \not\models T_{n+1}$ for all $n \in \omega$. Prove that $T^* = \bigcup_{n \in \omega} T_n$ is a consistent theory and that T^* is not finitely axiomatizable.
- 2. a) Let L be the language whose only non-logical symbol is the binary relation symbol E. An L-structure \mathfrak{A} is called a graph provided $\mathfrak{A} \models \forall x \forall y (Exy \rightarrow Eyx)$ and $\mathfrak{A} \models \forall x \neg Exx$.

A graph \mathfrak{A} is *connected* iff for all $a \neq a^*$ in A either $E^{\mathfrak{A}}(a, a^*)$ holds or there are $a_1, \ldots, a_n \in A$ for some positive integer n such that $E^{\mathfrak{A}}(a, a_1), E^{\mathfrak{A}}(a_i, a_{i+1})$ for all $1 \leq i < n$, and $E^{\mathfrak{A}}(a_n, a^*)$

all hold. Prove or disprove each of the following:

- a) Every elementary substructure of a connected graph \mathfrak{A} is connected.
- b) Every elementary extension of a connected graph \mathfrak{A} is connected.
- 3. a) Let T be a complete theory in a countable language L which has a prime model \mathfrak{A} . Assume further that \mathfrak{A} realizes every L-type (in finitely many variables) consistent with T. Prove that T is ω -categorical.

- b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L- type consistent with T which is omitted in some model of T. Prove that Φ is realized by infinitely many elements in some model of T.
- 4. a) Let L be the language with L^{nl} = {+, ·, <, 0, s} and let 𝔅 = (ω, +, ·, <, 0, s). Let T be a recursively axiomatizable L-theory such that 𝔅 ⊨ T, let φ(x) be a Σ-formula of L, and let D = φ^𝔅. Assume that D is not recursive. Prove that there is some 𝔅 ⊨ T and some n ∈ (ω \ D) such that 𝔅 ⊨ φ(n̄).
 - b) Let $A, B \subseteq \omega$ be disjoint r.e., non-recursive sets. Prove that $(A \cup B)$ is not recursive.
- 5. a) Let $R \subseteq (\omega \times \omega)$ be r.e., and assume that R_k is infinite for all $k \in \omega$. Prove that there is some recursive $C \subseteq \omega$ such that $(C \cap R_k) \neq \emptyset$ for all $k \in \omega$ and such that $(\omega \setminus C)$ is infinite.
 - b) Prove that there is some $f : \omega \to \omega$ such that for every recursive $g : \omega \to \omega$ there is some $n \in \omega$ such that g(k) < f(k) for all $k \ge n$.
- 6. a) Let $A = \{e : \{e\}(k) = 0 \text{ for all } k \in \omega\}$ and let $B = \{e : \{e\}(k) = 1 \text{ for all } k \in \omega\}$. Prove that $A \equiv_m B$.
 - b) Let \mathfrak{N} be the standard model for arithmetic on the natural numbers, and let $T = \{ \lceil \sigma \rceil : \mathfrak{N} \models \sigma \}$. Prove that $A \leq_m T$ for every arithmetic set A.

January 2006

- 1. a) Let L be a language containing (at least) the binary relation symbol E. Let \mathfrak{A} be an L-structure such that $E^{\mathfrak{A}}$ is an equivalence relation on A. Prove that every $E^{\mathfrak{A}}$ -equivalence class is finite iff every proper elementary extension \mathfrak{B} of \mathfrak{A} conatins an element which is not $E^{\mathfrak{B}}$ -equivalent to any element of \mathfrak{A} .
 - b) Let T be a theory in a language L and let $\Phi(x)$ and $\Psi(y)$ be L-types. Assume that no model of T realizes both $\Phi(x)$ and $\Psi(y)$. Prove that there is some $\theta \in Sn_L$ such that whenever $\mathfrak{A} \models T$ and \mathfrak{A} realizes $\Phi(x)$ then $\mathfrak{A} \models \theta$, and whenever $\mathfrak{A} \models T$ and \mathfrak{A} realizes $\Psi(y)$ then $\mathfrak{A} \models \neg \theta$.
- 2. a) Let \mathfrak{A} be an *L*-structure. Assume that $Th(\mathfrak{A}_A)$ is axiomatized by some $\Sigma \subseteq Sn_{L(A)}$ such that every sentence in Σ is either universal or the negation of a universal sentence. Prove that $Th(\mathfrak{A}_A)$ is axiomatized by some $\Sigma^* \subseteq Sn_{L(A)}$ consisting solely of universal sentences. [Recall that θ is universal iff it has the form $\forall x_0 \ldots \forall x_k \varphi$ where φ is an open formula.]
 - b) Let T be a complete theory in a countable language L. Assume that there is some complete non-principal 1-type consistent with T. Prove that every model of T realizes infinitely many complete 1-types.
- 3. Let \mathfrak{A} be an *L*-structure and let $\Phi(x)$ be a complete *L*-type. Assume that $\Phi(x)$ is realized by exactly three elements in \mathfrak{A} .

- a) Assuming, in addition, that $\Phi(x)$ is principal, prove that $\Phi(x)$ is realized by exactly three elements in every *L*-structure \mathfrak{B} elementarily equivalent to \mathfrak{A} .
- b) Assuming, in addition, that \mathfrak{A} is ω -saturated (but not that Φ is principal), prove that $\Phi(x)$ is realized by exactly three elements in every *L*-structure \mathfrak{B} elementarily equivalent to \mathfrak{A} .
- c) Give an example of L, L-structures \mathfrak{A} and \mathfrak{B} , and a complete L-type $\Phi(x)$ such that $\Phi(x)$ is realized by exactly three elements in \mathfrak{A} and $\mathfrak{A} \equiv \mathfrak{B}$, but $\Phi(x)$ is not realized by exactly three elements in \mathfrak{B} .
- 4. a) Let S ⊆ (ω × ω) be r.e., and assume that ⋃_{k∈ω}S_k is recursive. Prove that there is some recursive R ⊆ (ω × ω) such that R_k ⊆ S_k for all k ∈ ω and ⋃_{k∈ω}R_k = ⋃_{k∈ω}S_k.
 - b) Let T be a consistent theory in a language with just finitely many nonlogical symbols, including at least the unary function symbol s and the constant $\overline{0}$. Assume that every recursive relation is representable in T. Prove that T is undecidable.
- 5. a) Let $A_0 = \{e \in \omega : \forall k(\{e\}(k) = 0)\}$ and $A_1 = \{e \in \omega : \forall k(\{e\}(k) = 1)\}$. Prove or disprove: there is some recursive $B \subseteq \omega$ such that $A_0 \subseteq B$ and $(A_1 \cap B) = \emptyset$.
 - b) Let $A, B \subseteq \omega$. Explicitly define some $C \subseteq \omega$ such that the Turing degree of C is the least upper bound of the Turing degree of A and the Turing degree of B. You must prove that C has these properties.
- 6. a) Recall that $INF = \{e \in \omega : W_e \text{ is infinite}\}$. Prove that $INF \leq_m \{e \in \omega : \forall k(\{e\}(k) = 0)\}.$
 - b) Define $E \subseteq (\omega \times \omega)$ by $E = \{(e_1, e_2) : \{e_1\} = \{e_2\}\}$. Place E in the arithmetic hierarchy, that is determine (with proof) some $n \in \omega$ such that either $E \in \Sigma_n$ or $E \in \Pi_n$.

August 2005

- a) Let L be a language containing (at least) the unary function symbol s. An L-structure A is *periodic* iff for every a ∈ A there is some positive integer n such that (s^A)ⁿ(a) = a. Prove that there is no L-theory T such that for all L-structures A, A ⊨ T iff A is periodic.
 - b) Let T be a complete ω -categorical theory in a countable language L. Let $\varphi(x, y) \in Fm_L$ and let \mathfrak{A} be any model of T. Prove that there is some $n \in \omega$ such that for every $a \in A$ either $|\varphi^{\mathfrak{A}}(x, \bar{a})| < n$ or $\varphi^{\mathfrak{A}}(x, \bar{a})$ is infinite.
- 2. a) Let L be the language with L^{nl} = {+, ·, <, 0, s}, let
 𝔑 = (ω, +, ·, <, 0, s), and let 𝔄 be any proper elementary extension of
 𝔑. Let φ(x) ∈ Fm_L. Prove that φ^𝔅 is infinite if and only if there is some a ∈ A such that a ∈ (φ^𝔅 \ ω).
 - b) Let T be a complete theory in a countable language L. Let $\Phi(x)$ and $\Psi(x)$ be types consistent with T. Assume that every model of T realizes either Φ or Ψ (or both). Prove that either every model of T realizes Φ or every model of T realizes Ψ .
- 3. Let T be a complete theory in a countable language L with infinite models.
 - a) Prove that every countable model of T has a proper countable elementary extension.

- b) Assume that $\mathfrak{A} \models T$ is countable and ω_1 -universal. Prove that \mathfrak{A} is isomorphic to some proper elementary extension of itself.
- c) Assume that $\mathfrak{A} \models T$ is countable and isomorphic to every countable elementary extension of itself. Prove that \mathfrak{A} is ω -saturated.
- 4. Let L be the language with $L^{nl} = \{+, \cdot, <, \bar{0}, s\}$ and let $\mathfrak{N} = (\omega, +, \cdot, <, 0, s).$
 - a) Define the function $\pi: \omega \to \omega$ by $\pi(n) =$ the number of primes $\leq n$. Prove or disprove: there is some $\varphi(x, y) \in Fm_L$ which defines the graph of π (that is, the relation $\pi(n) = l$) in \mathfrak{N} .
 - b) Prove that there is some $\theta(y) \in Fm_L$ such that for every Σ -formula $\varphi(x)$ and for every $n \in \omega$ we have $\mathfrak{N} \models \theta(\overline{[\varphi(\bar{n})]})$ iff $\mathfrak{N} \models \varphi(\bar{n})$.
- 5. a) Assume that $R \subseteq \omega \times \omega$ is r.e., R_k is infinite for all $k \in \omega$, and $(R_k \cap R_l) = \emptyset$ whenever $k \neq l$. Prove that there is some recursive $C \subseteq \omega$ such that $|C \cap R_k| = 1$ for all $k \in \omega$.
 - b) Give an example of a theory T in a language L with just finitely many non-logical symbols which is undecidable but not essentially undecidable (you must establish these properties of T).
- 6. a) Prove or disprove: there is some arithmetic relation $R \subseteq \omega \times \omega$ such that for every arithmetic $X \subseteq \omega$ there is some $k \in \omega$ such that $X = R_k$.

Let $A = \{e \in \omega : 0 \in W_e\}$, $B = \{e \in \omega : 1 \in W_e\}$, and let $C = \{e \in \omega : 0 \notin W_e\}$. Prove that

- b) $A \leq_m B$, but
- c) $A \not\leq_m C$.

January 2005

LOGIC (Ph.D./M.A. version)

1. a) Let T be a theory in a language L and let $\varphi(x), \psi_k(x) \in Fm_L$ for all $k \in \omega$. Assume that $T \models \forall x(\psi_k \to \psi_{k+1})$ for all $k \in \omega$. Assume further that for every $\mathfrak{A} \models T$ and every $a \in A$ we have

 $\mathfrak{A}_A \models \varphi(\bar{a})$ iff there is some $k \in \omega$ such that $\mathfrak{A}_A \models \psi_k(\bar{a})$. Prove that there is some $k \in \omega$ such that $T \models \forall x(\varphi \leftrightarrow \psi_k)$.

- b) Prove that there is some $\mathfrak{A} \equiv (\omega, <)$ such that $(\mathbb{R}, <)$ can be isomorphically embedded into \mathfrak{A} .
- 2. a) Let L be the language whose only non-logical symbol is a binary relation symbol < and let \mathfrak{B} be the L-structure ($\mathbb{Q}, <$). Let $X \subseteq \mathbb{Q}$ be finite. Prove that the set \mathbb{Z} is not definable in the L(X)-structure \mathfrak{B}_X .
 - b) Let L be the language whose only non-logical symbol is a binary relation symbol E. Let \mathfrak{A} be the L-structure such that

 $E^{\mathfrak{A}}$ is an equivalence relation on A,

there is exactly one n-element equivalence class for every positive integer n, and

there are no infinite equivalence classes.

Is there is some proper substructure \mathfrak{B} of \mathfrak{A} such that $\mathfrak{A} \equiv \mathfrak{B}$? Prove or disprove.

3. a) Let T be a complete theory in a countable language L. Assume that T has no countable ω -saturated model. Prove that every type consistent with T is realized on at least two non-isomorphic countable models of T.

- b) Let T be a complete theory in a countable language L. Let $\Phi(x)$ be a complete non-principal type consistent with T. Let \mathfrak{A} be an ω -saturated model of T. Prove that Φ is realized by infinitely many elements of A.
- 4. a) Let T be a consistent recursively axiomatizable theory in the language L for arithmetic, let $\varphi(x) \in Fm_L$, and let $A \subseteq \omega$. Assume that A is weakly representable in T by φ and A is not recursive. Prove that there is some $k \in \omega$ such that $k \notin A, T \not\vdash \neg \varphi(\bar{k})$, and $T \not\vdash \varphi(\bar{k})$.
 - b) Let L be a language with just finitely many non-logical symbols which contains at least the unary function symbol s and the constant symbol $\overline{0}$. Let T be a consistent theory of L such that all recursive functions and relations are representable in T. Prove that T is undecidable.
- 5. a) Let $A \subseteq \omega$ be an infinite r.e. set. Prove that there are infinite recursive sets B_0 and B_1 contained in A such that $(B_0 \cap B_1) = \emptyset$.
 - b) Let $A, B \subseteq \omega$. Prove that B is r.e. in A iff $B \leq_m A'$.
- 6. a) Let $A = \{e \in \omega : \{e\}(e) = e\}$. Prove that A is not recursive.
 - b) Let $A = \{e \in \omega : |W_e| \le 1\}$ and let $B = \{e \in \omega : |W_e| \ge 2\}$. Prove that $A \equiv_T B$ but $A \not\equiv_m B$.

August 2004

- a) Let T be a theory in a language L containing at least the binary relation symbol E. Assume that for every 𝔄 ⊨ T, E^𝔅 is an equivalence relation on A. Assume further that whenever 𝔅 ⊨ T, 𝔅 ≺ 𝔅, and a ∈ A then {b ∈ B : E^𝔅(a, b) holds} ⊆ A. Prove that there is some n ∈ ω such that for every 𝔅 ⊨ T every E^𝔅-class has < n elements.
 - b) Let T be a theory of L and let $\Phi(x)$ and $\Psi(x)$ be L-types. We say that a formula $\theta(x)$ of L separates Φ and Ψ if in every model of T every element realizing Φ satisfies θ and every element realizing Ψ satisfies $\neg \theta$. Assume that no formula of L separates Φ and Ψ . Prove that T has a model realizing $(\Phi \cup \Psi)$.
- 2. a) Prove that there is no formula $\varphi(x)$ which defines $\{1\}$ in the structure $(\mathbf{Q}, <, +)$.
 - b) Prove or disprove: Th((Q, +, \cdot , <, 0, 1)) has a countable ω -saturated model.
- 3. a) Let T be a complete theory in a countable language. Assume that there is some complete, non-principal type in one variable consistent with T. Prove that there are infinitely many complete types in one variable consistent with T.
 - b) Let L be the language whose only non-logical symbol is the binary relation symbol <. An L-structure \mathfrak{A} is a *linear order* provided $<^{\mathfrak{A}}$ is a *linear order* of A. Prove that there is some infinite linear order \mathfrak{A} such that every L-sentence true on \mathfrak{A} is also true on some finite linear order.

- 4. a) Let $A \subseteq \omega$ be an infinite r.e. set. Prove that there is some infinite recursive set $B \subseteq A$.
 - b) Let L be the language for arithmetic on the natural numbers, that is, $L^{nl} = \{+, \cdot, <, \bar{0}, s\}$. Let $A = \{\lceil \sigma \rceil : \models \sigma\}$. Prove that A is an *m*-complete r.e. set.
- 5. a) Let $A = \{e \in \omega : W_e = \emptyset\}$ and let $B = \{e \in \omega : W_e = \omega\}$. Prove that A and B are recursively inseparable, that is there is no recursive $C \subseteq \omega$ such that $A \subseteq C$ and $(B \cap C) = \emptyset$.
 - b) Prove that there is some $B \subseteq \omega$ such that $A \leq_m B$ for every arithmetic set $A \subseteq \omega$.
- 6. a) Define a partial recursive function g of one argument which cannot be extended to a total recursive function, i.e., there is no total recursive $f: \omega \to \omega$ such that f(n) = g(n) whenever $g(n) \downarrow$.
 - b) Prove that there are infinitely many $e \in \omega$ such that $\{e\}(e+1) = 2e$.

January 2004

- a) Let L be a countable language containing at least the binary relation symbol E. Let T be a theory of L such that in every model 𝔅 of T, E^𝔅 is an equivalence relation on A. Let φ(x) ∈ Fm_L. Assume that no model 𝔅 of T contains an element satisfying φ whose E^𝔅-class is infinite. Prove that there is some n ∈ ω such that no model 𝔅 of T contains an element satisfying φ whose F^𝔅-class has > n elements.
 - b) Let 𝔄 = (ω, +, ·) and let 𝔅 be a proper elementary extension of 𝔅.
 Prove that there are infinitely many primes in (B \ ω). [An element b of B is prime if it cannot be expressed in 𝔅 as the product of two elements of B each of which is different than b]
- 2. a) Let L^{nl} = {E} where E is a binary relation symbol. Let 𝔄 be the L-structure such that E^𝔅 is an equivalence relation on A with exactly one n-element equivalence class for every positive integer n and with no infinite equivalence classes. Let 𝔅 be a countable elementary extension of 𝔅. Prove that tp_𝔅(b₁) = tp_𝔅(b₂) for all b₁, b₂ ∈ (B \ A).
 - b) Let $L = (L_1 \cap L_2)$ and assume that $(L_i \setminus L)$ contains just constant symbols, for i = 1, 2. Let T be a complete theory of L and let T_i be a theory of L_i for i = 1, 2. Assume that some model of T can be expanded to a model of T_1 , and also that some model of T can be expanded to a model of T_2 . Prove that there is some model \mathfrak{A} of T such that \mathfrak{A} can be expanded to a model \mathfrak{A}_1 of T_1 and \mathfrak{A} can also be expanded to a model \mathfrak{A}_2 of T_2 .

3. a) Let L be a countable language containing at least the binary relation symbol E. Let T be a theory of L such that T ⊨ ∀x∀y(Exy → Eyx). If A ⊨ T and a, a* ∈ A with a ≠ a* we say that a, a* are connected if either E^A(a, a*) holds or there are a₁,..., a_n ∈ A for some positive integer n such that

 $E^{\mathfrak{A}}(a, a_1), E^{\mathfrak{A}}(a_i, a_{i+1})$ for all $1 \leq i < n$, and $E^{\mathfrak{A}}(a_n, a^*)$

all hold. Assume that in every model of T there is a pair of distinct elements that is not connected. Prove that there is some $\psi(x, y) \in Fm_L$ consistent with T such that for every $\mathfrak{A} \models T$ and every $a, a^* \in A$, if $\mathfrak{A}_A \models \psi(\bar{a}, \bar{a^*})$ then $a \neq a^*$ and a, a^* are not connected.

- b) Let T be a complete theory in a countable language L. Let \mathfrak{A} be a prime model of T and let $\Phi(x)$ be a complete type of L. Assume that Φ is realized by exactly two elements in \mathfrak{A} . Prove that Φ is realized by exactly two elements in \mathfrak{A} .
- 4. a) Let R ⊆ ω × ω be r.e. and assume that ⋃_{k∈ω} R_k is recursive. Prove that there is some recursive S ⊆ ω × ω such that S_k ⊆ R_k for all k ∈ ω and ⋃_{k∈ω} S_k = ⋃_{k∈ω} R_k.
 - b) A total function $f: \omega \to \omega$ is monotone iff for all $m, n \in \omega$, if $m \leq n$ then $f(m) \leq f(n)$. Let f be a recursive monotone function. Prove that the range of f is recursive. [Warning: f need not be strictly increasing]
- 5. a) Give an example of a theory T which is undecidable but not essentially undecidable. [You must prove both assertions about T]
 - b) Prove that there are r.e. sets $A, B \subseteq \omega$ such that $(A \cap B) = \emptyset$ but there is no recursive $C \subseteq \omega$ such that $A \subseteq C$ and $(B \cap C) = \emptyset$.
- 6. a) Prove that $\{e: 2 \in W_e\} \equiv_m \{e: 3 \in W_e\}.$
 - b) Let $I = \{e \in \omega : W_e = \{3\}\}$. Determine some $n \in \omega$ such that either $I \in \Sigma_n$ or $I \in \Pi_n$. [You need not prove your choice of n is minimal]

August 2003

LOGIC (Ph.D./M.A. version)

- 1. a) Let T be a theory of a language L. Assume that there is some $\theta \in Sn_L$ such that for every model \mathfrak{A} of T, \mathfrak{A} is infinite iff $\mathfrak{A} \models \theta$. Prove that there is some $n \in \omega$ such that every finite model of T has at most n elements.
 - b) Prove that $(\mathbf{Q}, +, \cdot, 0, 1)$ is a prime model of its complete theory.
- a) Let 𝔑 = (ω, +, ·, <, 0, s) be the standard model for arithmetic on ω and let 𝔅 be some fixed proper elementary extension of 𝔑. Let φ(x) ∈ Fm_L and assume that φ^𝔅 = φ^𝔅. Prove that φ^𝔅 is finite.
 - b) Let $L^{nl} = \{E\}$ where E is a binary relation symbol. An L-structure \mathfrak{A} is a graph provided $\mathfrak{A} \models \forall x \forall y (Exy \rightarrow Eyx)$. A graph \mathfrak{A} is connected iff for all $a, a^* \in A$ with $a \neq a^*$ there are $a_1, \ldots, a_n \in A$ for some $n \in \omega$ such that

 $E^{\mathfrak{A}}(a, a_1), E^{\mathfrak{A}}(a_i, a_{i+1})$ for all $1 \leq i < n$, and $E^{\mathfrak{A}}(a_n, a^*)$

all hold. Let T be an L-theory such that every connected graph is a model of T. Prove that there is some graph which is a model of T but is not connected.

3. a) Let T be a complete theory in a countable language L. Assume that for every $\varphi(x) \in Fm_L$ consistent with T there is some $\psi(x) \in Fm_L$ such that both $(\varphi \land \psi)$ and $(\varphi \land \neg \psi)$ are consistent with T. Prove that T does not have a prime model.

- b) Let T be a complete theory in a countable language L. Let $\mathfrak{A} \models T$ be countable and assume that \mathfrak{A} is isomorphic to each of its countable elementary extensions. Prove that T has a countable ω -saturated model and that \mathfrak{A} itself is ω -saturated.
- 4. a) Let L be a language with just finitely many non-logical symbols, including at least the unary function symbol s and the constant 0. Let T be a theory of L such that every recursive relation is representable in T. Prove that T is undecidable.
 - b) Let $A = \{ [\sigma] : \sigma \text{ is a } \Sigma \text{-sentence and } \mathfrak{N} \models \sigma \}$, where \mathfrak{N} is the usual model for arithmetic on ω . Prove that A is not Π_1 .
- 5. a) Let $R \subseteq \omega \times \omega$ be r.e. Assume that $R_k \neq \emptyset$ for all $k \in \omega$, $\bigcup_{k \in \omega} R_k = \omega$, and for all $k, l \in \omega$ either $R_k = R_l$ or $R_k \cap R_l = \emptyset$. Assume further that there is some recursive $C \subseteq \omega$ such that for all $k \in \omega$, $|R_k \cap C| = 1$. Prove that R is recursive.
 - b) Let $A = \{e \in \omega : W_e \text{ is either finite or cofinite}\}$. Find an n so that $A \in \Delta_n$. [You need not prove your n is the least possible]
- 6. a) Let A, B ⊆ ω be recursively inseparable r.e. sets (so A ∩ B = Ø and there is no recursive set A* with A ⊆ A* and A* ∩ B = Ø.) Assume that A≤_mC where C ⊆ ω. Prove that there is some infinite r.e. set D ⊆ ω such that C ∩ D = Ø.
 - b) Let $I = \{e \in \omega : |W_e| = 1\}$. Prove that every r.e. set is many-one reducible to I.

January 2003

- 1. a) Prove or disprove: (Z, +) has a proper elementary substructure.
 - b) Assume that \mathfrak{A} and \mathfrak{B} are *L*-structures and $\mathfrak{A} \equiv \mathfrak{B}$. Prove that there is some \mathfrak{C} such that both \mathfrak{A} and \mathfrak{B} can be elementarily embedded in \mathfrak{C} .
- 2. a) Let L be a countable language containing (at least) the binary relation symbol E. Let T be a complete ω -categorical L-theory, let \mathfrak{A} be a countable model of T, and assume that $E^{\mathfrak{A}}$ is an equivalence relation on A. Prove that there is some $n \in \omega$ such that for every $a \in A$ the $E^{\mathfrak{A}}$ -class of a is either infinite or has fewer than n elements.
 - b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be a complete L-type. Assume that T has some model which contains exactly one element realizing Φ and also some model which contains exactly two elements realizing Φ . Prove that T has a model omitting Φ .
- 3. a) Let $L^{nl} = \{c_n : n \in \omega\}$. Let \mathfrak{A} be an *L*-structure such that $c_n^{\mathfrak{A}} \neq c_m^{\mathfrak{A}}$ for all $n \neq m$ and such that there is exactly one element $a^* \in A$ such that $a^* \neq c_n^{\mathfrak{A}}$ for all $n \in \omega$. Prove that there is no formula $\varphi(x)$ of *L* such that $\varphi^{\mathfrak{A}} = \{a^*\}$.
 - b) Let \mathfrak{A} be a countable ω -saturated structure for a countable language L. Let $a_0 \in A$ be such that $h(a_0) = a_0$ for every automorphism h of \mathfrak{A} . Prove that there is some formula $\varphi(x)$ of L such that $\varphi^{\mathfrak{A}} = \{a_0\}$.

- 4. a) Let T be a recursively axiomatizable theory true on \mathfrak{N} , the standard model for arithmetic on the natural numbers. Let $X \subseteq \omega$ be r.e. but not recursive, and assume that $X = \varphi^{\mathfrak{N}}$ for some Σ -formula $\varphi(x)$. Prove that there is some $\mathfrak{B} \models T$ such that $\mathfrak{B} \models \varphi(\bar{n})$ for some $n \in (\omega \setminus X)$.
 - b) Let $R \subseteq (\omega \times \omega)$ be r.e. Assume the R_n 's are infinite and pairwise disjoint. Prove that there is some recursive $C \subseteq \omega$ such that $|R_n \cap C| = 1$ for all $n \in \omega$.
- 5. a) Let $L^{nl} = \emptyset$. Give an example of a theory T of L which is undecidable but all its complete extensions (in L) are decidable.
 - b) Let T be a recursively axiomatizable theory in a language L with just finitely many non-logical symbols. Assume that T has just finitely many complete extensions (in L). Prove that T is decidable.
- 6. a) Recall that

>

 $FIN = \{e : W_e \text{ is finite}\} \text{ and } INF = \{e : W_e \text{ is infinite}\}.$ Prove that $FIN \leq_T INF$ but $FIN \leq_m INF$.

b) Recall that $REC = \{e : W_e \text{ is recursive}\}$. Prove that REC is arithmetic, that is, that REC is in Σ_n or Π_n for some $n \in \omega$. Although you should try to make n as small as possible, you do **not** need to prove your choice of n is minimal.

August 2002

LOGIC (Ph.D./M.A. version)

- a) Let a theory T and sentences σ_n of a language L be given. Assume that T ⊨ (σ_n → σ_{n+1}) for all n ∈ ω. Assume further that for every A ⊨ T there is some n ∈ ω such that A ⊨ σ_n. Prove that there is some n₀ ∈ ω such that T ⊨ (σ_{n0+1} → σ_{n0}). [In fact, T ⊨ (σ_m → σ_{n0}) will hold for all m > n₀.]
 - b) Let L_0 be the language containing just the binary relation symbol <, let L be a language containing L_0 , and let T be a theory of L. Assume that $(\omega, <)$ embeds into the L_0 -reduct of some model of T. Prove that $(\mathbf{Q}, <)$ can be embedded into the L_0 -reduct of some model of T.
- 2. a) Let \mathfrak{A} be $(\omega, +, \cdot, <, 0, s)$. In \mathfrak{A} the set of primes is definable by the following formula $\varphi(x)$:

 $(s\bar{0} < x) \land \forall y \forall z (x = y \cdot z \to (x = y) \lor (x = z))$

Let \mathfrak{B} be any proper elementary extension of \mathfrak{A} . Prove that \mathfrak{B} contains a new prime, that is, some element b satisfying $\varphi(x)$ which is not in ω .

b) Let L be the language whose only non-logical symbol is the binary relation E and let T be the L-theory axiomatized by sentences saying that E is an equivalence relation on the universe with infinitely many equivalence classes, each of which is infinite. Prove that T is model complete, that is, for all models \mathfrak{A} and \mathfrak{B} of T, if $\mathfrak{A} \subseteq \mathfrak{B}$ then $\mathfrak{A} \prec \mathfrak{B}$.

- 3. a) Let T be a complete theory in a countable language L. Assume that there is some non-principal complete type in one variable consistent with T. Prove that every model of T realizes (at least) three different complete types in one variable. [In fact each model of T will realize infinitely many, but you need not prove this.]
 - b) Let A be an ω-saturated L-structure and let φ(x, y) be an L-formula. Assume that for every a ∈ A the set φ^A(x, ā) is finite. Prove that there is some n ∈ ω such that for every a ∈ A the set φ^A(x, ā) contains at most n elements.
- 4. a) Assume that R ⊆ ω × ω is r.e. and that R_n is infinite for every n ∈ ω. Let g : ω → ω be any recursive function. Prove that there is some recursive function f : ω → ω such that f(n) ∈ R_n and g(n) < f(n) for all n ∈ ω.
 - b) Let L be the language whose only non-logical symbol is the binary relation E and let T_0 be the L-theory axiomatized by sentences stating that E is an equivalence relation on the universe. Prove that T has a complete undecidable extension.
- 5. a) Define $f: \omega \to \omega$ by

$$f(n) = (\mu k)[\{n\} = \{k\}].$$

Prove that f is not recursive.

- b) Assume that $B \subseteq \omega$ is such that $A \leq_m B$ for all r.e. sets A. Prove that B contains some infinite r.e. subset.
- 6. a) Let $A_n \subseteq \omega$ be given for all $n \in \omega$. Prove that there is some $B \subseteq \omega$ such that $A_n \leq_T B$ holds for all $n \in \omega$.
 - b) Let $A = \{e \in \omega : \{e\}(5) = 7\}$. Prove that $A \equiv_m K$. [Recall that $K = \{e : \{e\}(e) \downarrow\}$]

January 2002

LOGIC (Ph.D./M.A. version)

- 1. a) Let T be a theory of L, let $\Phi(x)$ and $\Psi(x)$ be types of L. Assume that for every $\mathfrak{A} \models T$ and all $a \in A$, a realizes Φ iff a does not realize Ψ Prove that there is some $\varphi(x) \in Fm_L$ such that $\Phi^{\mathfrak{A}} = \varphi^{\mathfrak{A}}$ for every model \mathfrak{A} of T
 - b) Let L be a language containing (at least) the binary relation symbol E Let \mathfrak{A} be an ω -saturated L-structure in which $E^{\mathfrak{A}}$ is an equivalence relation on \mathcal{A} with exactly one infinite equivalence class. Prove that there is some $n \in \omega$ such that every finite $E^{\mathfrak{A}}$ -class has at most n elements.
- 2. a) Prove or disprove: (ω, \pm) has a proper elementary substructure.
 - b) Let T be an *L*-theory. Let \mathfrak{A} be an *L*-structure which cannot be embedded in any model of T. Prove that there is an existential sentence θ of L (that is, θ has the form $\exists x_1 \dots \exists x_n \alpha$ where α is an open formula of L) such that $\mathfrak{A} \models \theta$ but $T \models \neg \theta$.
- 3. a) Prove that the structure $(\omega, |)$ has uncountably many automorphisms (where n|k iff $k = n \cdot l$ for some $l \in \omega$).
 - b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be an L-type which is omitted on some model of T. Assume further that any two countable models of T omitting Φ are isomorphic. Prove that every countable model of T omitting Φ is prime.

[Warning: You cannot assume that T has a prime model]

- 4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and that $\bigcup_{k \in \omega} R_k = \omega$. Prove that there is some recursive $S \subseteq R$ such that $\bigcup_{k \in \omega} S_k = \omega$.
 - b) Let L be a language with only finitely many non-logical symbols and let $L' = L \cup \{c\}$ where c is a constant symbol not in L. Let T' be a finitely axiomatizable undecidable theory of L' and let $T = T' \cap Sn_L$. Prove that T is also undecidable.
- 5. Recall that subsets A and B of ω are called *recursively inseparable* if there is no recursive $C \subseteq \omega$ such that $A \subseteq C$ and $B \cap C = \emptyset$.
 - a) Prove that there are disjoint r.e. subsets A and B of ω which are recursively inseparable.
 - b) Assume that A and B are disjoint r.e. subsets of ω which are recursively inseparable. Prove that $\omega \setminus (A \cup B)$ is infinite.
- 6. a) Let $A = \{ [\sigma] : \sigma \in Sn_L \text{ and } Q \vdash \sigma \}$ (where L is the usual language for arithmetic on the natural numbers). Prove that A is an *m*-complete r.e. set.
 - b) Prove that there is some $A \subseteq \omega$ such that $A \in \Sigma_3$ but $A \notin \Pi_2$.

August 2001

LOGIC (Ph.D./M.A. version)

a) Let T be a theory of a language L, and let φ_i(x) be formulas of L for all i ∈ ω. Assume that for all i ∈ ω
 T ⊨ ∀x(φ_{i+1}(x) → φ_i(x)) and T ⊨ ¬∀x(φ_i(x) → φ_{i+1}(x)).

Prove that T has a model \mathfrak{A} with an element a such that $\mathfrak{A} \models \varphi_i(\bar{a})$ for all $i \in \omega$.

- b) Let T be a complete theory in a countable language L, and assume that for each n > 0 there are just countably many complete types in n free variables consistent with T. Prove that T has a prime model.
- 2. a) Prove or disprove: (Z, <) has a proper elementary submodel.
 - b) Does Th((Z, +, 1)) have a countable ω saturated model? Prove your answer.
- 3. a) Let A be the unique countable model of a a complete ω-categorical theory T in a countable language L, and let φ(x, y) ∈ Fm_L. Prove that there is some n ∈ ω such that for every a ∈ A, either |φ^A(x, ā)| < n or φ^A(x, ā) is infinite.
 - b) Let T be a complete theory in a countable language L having infinite models. Assume that for every $\varphi(x) \in Fm_L$ and for every $\mathfrak{A} \models T$, $\varphi^{\mathfrak{A}}$ is either finite or cofinite (meaning its complement is finite). Prove that there is exactly one non-principal complete type $\Phi(x)$ in the single variable x consistent with T.

4. a) Let T be a consistent recursively axiomatized theory containing the axioms for Q. Prove that there is a formula $\varphi(x)$ such that $T \models \varphi(\bar{n})$ for all $n \in \omega$ but $T \not\models \forall x \varphi(x)$.

- b) Let $R \subseteq \omega \times \omega$ be r.e., and assume that $|\omega \setminus R_k| = 2$ for every $k \in \omega$. Prove that R is recursive.
- 5. a) Assume that $A \subseteq \omega$ is such that $\{e : W_e = \emptyset\} \subseteq A \text{ and } \{e : W_e = \omega\} \cap A = \emptyset.$ Prove that A is not recursive.
 - b) Assume that $A \subseteq \omega$ is such that $K \leq_m A$. Prove that A contains an infinite r.e. subset.

[Recall that $K = \{e : e \in W_e\}$]

6. a) Let T be a consistent, decidable theory in a language L with just finitely many non-logical symbols. Prove that $T \subseteq T^*$ for some complete, decidable theory T^* of L.

[Hint: Let $\{\sigma_n : n \in \omega\}$ be a recursive list of all sentences of L ...]

b) Prove that $TOT \equiv_m INF$. [Recall that $TOT = \{e : W_e = \omega\}$ and $INF = \{e : W_e \text{ is infinite}\}$]

January 2001

LOGIC (Ph.D./M.A. version)

- a) Assume that L ⊆ L', let T' be an L'-theory and let 𝔅 be an L-structure. Assume that there is no 𝔅' ⊨ T' such that 𝔅 is elementarily equivalent to the L-reduct of 𝔅'. Prove that there is some σ ∈ Sn_L such that 𝔅 ⊨ σ and T' ⊨ ¬σ.
 - b) Let $L^{nl} = \{E\}$ where E is a binary relation symbol. Let K be the class of all L-structures \mathfrak{A} for which $E^{\mathfrak{A}}$ is an equivalence relation on A with at least one finite $E^{\mathfrak{A}}$ -class. Prove that there is no theory T of L such that K = Mod(T).

[Hint: Assume that $K \subseteq Mod(T)$ and find $\mathfrak{A} \models T$ such that $\mathfrak{A} \notin K$.]

2. a) Let L contain at least the binary relation symbol E, and let A be an infinite ω-saturated L-structure such that E^A is an equivalence relation on A. Assume that whenever A ≺ B and a ∈ A then {b ∈ B : E^B(a, b) holds} ⊂ A.

Prove that there is some $n_0 \in \omega$ such that every $E^{\mathfrak{A}}$ -class has at most n_0 elements.

- b) Let L be a countable language containing at least the unary relation symbols P_n for $n \in \omega$, and let T be a theory of L. Assume that T has a model \mathfrak{A} such that for every $\varphi(x) \in Fm_L$ if $\varphi^{\mathfrak{A}} \neq \emptyset$ then there is some $k \in \omega$ such that $(\varphi^{\mathfrak{A}} \cap P_k^{\mathfrak{A}}) \neq \emptyset$. Prove that T has a model \mathfrak{B} such that $B = \bigcup_{k \in \omega} P_k^{\mathfrak{B}}$.
- 3. Let T be a complete theory in a countable language L. Recall that a complete type $\Phi(x)$ consistent with T is said to be *non-principal* provided it does not contain a complete formula $\varphi(x)$.

- a) Assume that $\Phi(x)$ is a non-principal complete type consistent with T. Prove that T has some model which contains infinitely many elements realizing $\Phi(x)$.
- b) Assume that there are no non-principal complete types $\Phi(x)$ in the single free variable x consistent with T. Prove that there are only finitely many complete types in the single free variable x consistent with T.
- 4. a) Let A and B be r.e. subsets of ω . Assume that $(A \cup B)$ is recursive. Prove that there are recursive sets $A' \subseteq A$ and $B' \subseteq B$ such that $(A \cup B) = (A' \cup B')$.
 - b) Let A be an infinite r.e. subset of ω . Prove that there is an infinite recursive set B with $B \subseteq A$.
- 5. a) Give a theory T in a language L with just finitely many non-logical symbols which has an r.e. set of axioms but is such that $\{n \in \omega : T \text{ has a model } \mathfrak{A} \text{ with } |A| = n\}$

is not recursive. Prove that it has these properties.

- b) Assume that $R \subseteq \omega \times \omega$ is r.e. Let $A = \{k \in \omega : R_k \text{ is infinite}\}$. Prove that A is Π_2 .
- 6. a) Recall that $\mathbf{K} = \{e \in \omega : e \in W_e\}$ and that $\mathbf{INF} = \{e \in \omega : W_e \text{ is infinite}\}$. Prove that $\mathbf{K} \leq_m \mathbf{INF}$.
 - b) Let \mathcal{F} be a non-empty set of partial recursive functions of one argument and let $I = \{e \in \omega : \{e\} \in \mathcal{F}\}$. Prove that $I \not\leq_m (\omega \setminus I)$.

August 2000

- a) Let T be a theory of a language L containing (at least) the binary relation symbol E and so that for every 𝔅 ⊨ T, E^𝔅 is an equivalence relation on A. Assume further that whenever 𝔅 ⊨ T, 𝔅 ≺ 𝔅, a ∈ A and b ∈ (B \ A) then 𝔅_B ⊨ ¬E(ā, b). Prove that there is some n₀ ∈ ω such that for every 𝔅 ⊨ T all E^𝔅-classes have ≤ n₀ elements.
 - b) Let the only non-logical symbol of L be the binary relation symbol E. Let \mathfrak{A} be the *L*-structure in which $E^{\mathfrak{A}}$ is an equivalence relation on A with infinitely many 2 element classes and infinitely many 3 element classes and no other classes. Let $\mathfrak{A} \subseteq \mathfrak{B}$ where \mathfrak{B} adds exactly one more 2 element class and nothing else. Prove that $\mathfrak{A} \prec \mathfrak{B}$. [Hint: why are \mathfrak{A} and \mathfrak{B} elementarily equivalent?]
- **2.** a) Is the structure $(\mathbf{R}, +, \cdot, 0, 1)$ ω -saturated? Explain.
 - b) Assume that the *L*-structure \mathfrak{A} realizes exactly three different complete *L*-types in one free variable. Prive that the same is true of every model of $Th(\mathfrak{A})$.
- a) Let T be a complete theory in a countable language L, and let Φ(x) be an L-type. Assume that in every model of T the type Φ is realized by at most 2 elements. Prove that there is a formula φ(x) of L such that for every A ⊨ T, Φ^a = φ^a.

b) Let T be a complete theory in a countable language L which has no prime model. Let $\Phi(x)$ be an L-type omitted on some model of T. Prove that T has at least two nonisomorphic countable models omitting Φ .

i

- 4. a) Assume that $R \subseteq \omega \times \omega$ is r.e. and that R_k is infinite for all $k \in \omega$. Prove that there is a strictly increasing recursive function f on ω such that $f(k) \in R_k$ for all $k \in \omega$.
 - b) Prove that there is a function $g: \omega \to \omega$ such that for every *recursive* function f on ω there is some $n_0 \in \omega$ so that for all $n \ge n_0$ we have f(n) < g(n).
- 5. a) Assume that $R \subseteq \omega \times \omega$ is r.e. but not recursive and that $\bigcup_{k \in \omega} R_k$ is recursive. Prove that $R_k \cap R_l \neq \emptyset$ for some $k \neq l$.
 - b) Let f_1 and f_2 be partial recursive functions and assume that $f_1 \neq f_2$. Let $B_1 = \{e : \{e\} = f_1\}$ and let $B_2 = \{e : \{e\} = f_2\}$. Prove that there is no recursive set A such that $B_1 \subseteq A$ and $B_2 \cap A = \emptyset$.
- 6. a) Prove that $\{e: 0 \in W_e\}$ is an *m*-complete r.e. set.
 - b) Let REC = $\{e : W_e \text{ is recursive }\}$. Use Post's Theorem to prove that REC is r.e. in \emptyset'' .

-.

ζ.

January 2000

LOGIC (Ph.D./M.A. version)

- 1. a) Let a theory T and sentences σ_n for $n \in \omega$ be given. Assume that $T \models (\sigma_n \rightarrow \sigma_{n+1})$ and $T \not\models (\sigma_{n+1} \rightarrow \sigma_n)$ for all $n \in \omega$. Prove that T has a model \mathfrak{A} such that $\mathfrak{A} \models \neg \sigma_n$ for all $n \in \omega$.
 - b) Let L be a language containing at least the binary relation symbol E, and let \mathfrak{A} be an L-structure so that $E^{\mathfrak{A}}$ is an equivalence relation on A. Assume that for every elementary extension \mathfrak{B} of \mathfrak{A} and every $b \in B$ there is some $a \in A$ such that $E^{\mathfrak{A}}(a, b)$ holds. Prove that $E^{\mathfrak{A}}$ has just finitely many equivalence classes.
- 2. a) Prove that (Q, \leq) is isomorphically embeddable in some $\mathfrak{B} \equiv (\omega, \leq)$.

b) Prove or disprove: (Z, +) has a proper elementary submodel.

- a) Let L be a countable language containing at least the binary relation symbol E, and let T be a theory of L such that for every model 𝔅 of T, E^𝔅 is an equivalence relation on A. Assume that for every model 𝔅 of T some E^𝔅 class is infinite. Prove that there is some formula φ(x) of L consistent with T so that whenever 𝔅 is a model of T, a ∈ A and 𝔅_A ⊨ φ(ā) then the E^𝔅-class of a is infinite.
 - b) Let T be a complete theory in a countable language L, let $\Phi(x)$ and $\Psi(x)$ be L-types, and let \mathfrak{A} be an ω saturated model of T. Assume that $\Phi^{\mathfrak{A}} = (A \setminus \Psi^{\mathfrak{A}})$. Prove that there is some formula $\varphi(x)$ of L such that for every model \mathfrak{B} of T, $\Phi^{\mathfrak{B}} = \varphi^{\mathfrak{B}}$.

4. a) Let $R \subseteq \omega \times \omega$ be r.e. and assume that $R_k \neq \emptyset$ for all $k \in \omega$ and that $R_k \cap R_l = \emptyset$ for all $k \neq l$. Prove that there is some r.e. $C \subseteq \omega$ such that $|R_k \cap C| = 1$ for all $k \in \omega$.

and a second with the second of the second second

.

- b) Let $X \subseteq \omega$ and a formula $\varphi(x)$ of the language of arithmetic be given. Assume that φ weakly represents X in every consistent theory T containing Q. Prove that X is recursive.
- 5. a) Let T be a recursively axiomatizable theory and assume that T has just finitely many complete extensions (in the same language). Prove that T is decidable.
 - b) Define $f: \omega \to \omega$ by f(e) = the least d such that $\{d\} = \{e\}$. Prove that f is not recursive.
- 6. a) Give an example (with proof) of a set $X \subseteq \omega$ which is Π_1 but not Σ_1 .
 - b) Prove or disprove: $\{[\sigma] : n \models \sigma\}$ is arithmetic.

August, 1999

- 1. a) Let T and T' be theories of L such that for every L-structure $\mathfrak{A}, \mathfrak{A} \models T$ iff $\mathfrak{A} \not\models T'$. Prove that T is finitely axiomatizable.
 - b) Prove that every countable linear order can be isomorphically embedded in (\mathbf{Q}, \leq) .
- **2.** a) Prove or disprove: $(\mathbf{R} \setminus \{0\}, \leq)$ is an elementary substructure of (\mathbf{R}, \leq) .
 - b) Let T be a complete ω -categorical theory in a countable language L. Prove that there is an integer k such that for every model \mathfrak{A} of T and every formula $\varphi(x)$ of L with just one free variable, if $\varphi^{\mathfrak{A}}$ has more than k elements then $\varphi^{\mathfrak{A}}$ is infinite.
- 3. Let T be a complete theory in a countable language L, let \mathfrak{A} be an ω saturated model of T, and let $\Phi(x)$ be a type in one free variable consistent with T. Assume that Φ is realized in \mathfrak{A} by *exactly* two elements
 of A. Prove that Φ is realized by exactly two elements in every model
 of T.
- 4. a) Assume that R ⊆ ω × ω is r.e. and U_{k∈ω} R_k = ω. Prove that there is some recursive S ⊆ R such that U_{k∈ω} S_k = ω and S_k ∩ S_l = Ø whenever k ≠ l.

- b) Let T be a consistent recursively axiomatizable extension of the theory Q. Find a formula $\varphi(x)$ such that $T \models \varphi(\bar{n})$ for all $n \in \omega$ but $T \not\models \forall x \varphi(x)$. (Be sure to show that the formula you define has this property.)
- 5. a) Let L be a language with just finitely many non-logical symbols and let $L' = L \cup \{c\}$ where c is a constant symbol not in L. Assume that T' is a finitely axiomatizable essentially undecidable theory of L' and let $T = T' \cap Sn_L$. Prove that T is essentially undecidable.
 - b) Prove that $A = \{e \in \omega : \{e\}(e) = e\}$ is not recursive.
- 6. An r.e. set $A \subseteq \omega$ is said to be *simple* if $(\omega \setminus A)$ is infinite but does not contain an infinite r.e. subset.
 - a) Prove that the intersection of two simple r.e. sets is simple.
 - b) Show that $K = \{e : e \in W_e\}$ is not simple.

January, 1999

- a) Let L be a language containing at least the binary relation symbol E and let T be a theory of L so that in every model A of T, E^A is an equivalence relation on A. Assume that in every model A of T, every E^A-class is finite. Prove that there is some n ∈ ω so that in every model A of T, every E^A-class contains at most n elements.
 - b) Let Σ_1 and Σ_2 be sets of sentences of L such that there is no sentence θ of L so that $\Sigma_1 \models \theta$ and $\Sigma_2 \models \neg \theta$. Prove that $(\Sigma_1 \cup \Sigma_2)$ has a model.
- 2. a) Let \mathfrak{A} be an *L*-structure and let $\varphi(x)$ be a formula of *L*. Prove that $\varphi^{\mathfrak{A}}$ is finite iff there is no \mathfrak{B} so that $\mathfrak{A} \prec \mathfrak{B}$ and $\varphi^{\mathfrak{A}} \neq \varphi^{\mathfrak{B}}$.
 - b) Let $\{\varphi_i(x) : i \in \omega\}$ be an infinite set of *L*-formulas and let \mathfrak{A} be an ω -saturated *L*-structure. Assume that for every $a \in A$ there is some $i \in \omega$ such that $\mathfrak{A}_A \models \varphi_i(\bar{a})$. Prove that for every *L*-structure \mathfrak{B} elementarily equivalent to \mathfrak{A} , for every $b \in B$ there is an $i \in \omega$ such that $\mathfrak{B}_B \models \varphi_i(\bar{b})$.
- 3. a) Let T be a complete theory in a countable language L that has an infinite model. Prove that T is ω -categorical iff all models of T realize precisely the same n-types for each $n \in \omega$.
 - b) Let L be a countable language and let \mathfrak{A} be an infinite, countable, saturated L-structure. Prove that there is a proper elementary extension \mathfrak{B} of \mathfrak{A} that is isomorphic to \mathfrak{A} .

- 4. a) Let T be a theory in a language $L \supseteq \{S, \bar{0}\}$ that contains only finitely many non-logical symbols. Assume that every recursive relation is representable in T. Prove that T is undecidable.
 - b) Let L be a countable language and let $L' = L \cup \{c\}$, where c is a constant symbol not in L. Let Σ be a set of sentences of L, let $T = Cn_L(\Sigma)$ and let $T' = Cn_{L'}(\Sigma)$. Prove that T is undecidable iff T' is undecidable.
- 5. a) Let $E \subseteq \omega \times \omega$ be r.e. Assume that E is an equivalence relation on ω and assume that $C \subseteq \omega$ is an r.e. set that contains exactly one element from each E-class. Prove that E is recursive.
 - b) Let $A \subseteq \omega$ be non-empty. Carefully prove that A is the domain of some partial recursive function iff A is the range of some total recursive function.
- 6. a) Let A be a non-empty, proper subset of ω . Assume that A is recursive. Prove that there are numbers $a \in A$ and $b \in (\omega \setminus A)$ such that $W_a = W_b$.
 - b) Let X be a non-empty subset of ω . Assume that X is r.e. Let $I = \{e \in \omega : W_e = X\}$. Prove that every r.e. subset A of ω is many-one reducible to I.

August, 1998

- 1. a) Let T be a theory of L and let σ be a sentence of L. Assume that for every model \mathfrak{A} of T, $\mathfrak{A} \models \sigma$ iff A is finite. Prove that there is some $n \in \omega$ such that every model of T with at least n elements is infinite.
 - b) Let \mathfrak{A} be a proper elementary extension of $(\omega, <)$. Prove that there is an infinite sequence $\{a_n\}_{n \in \omega}$ of elements of A such that $a_{n+1} < \mathfrak{A} a_n$ holds for all $n \in \omega$.
- a) Let a be an infinite L-structure. Assume that for every formula φ(x) of L, either φ^a is finite or (¬φ)^a is finite. Prove that there is exactly one complete 1-type Γ(x) consistent with T that can be realized by infinitely many elements in some model of T.
 - b) Let T be a complete theory in a countable language L and let $\Phi(x)$ be a type consistent with T. Assume that Φ is omitted in some model of T. Prove that there is another model of T in which Φ is realized by infinitely many elements.
- a) Let T be a complete theory in the language L = {+, ., <, S, 0} such that Q ⊆ T but (ω, +, ., <, S, 0) ⊭ T. Prove that there is some formula φ(x) of L such that T ⊨ ∃xφ(x) but T ⊨ ¬φ(n̄) for every n ∈ ω.
 - b) Let \mathfrak{A} be the countable model of an ω -categorical theory in a countable language L. Prove that \mathfrak{A} has a non-trivial automorphism.

- 4. a) Prove that every infinite r.e. $A \subseteq \omega$ contains an infinite recursive subset.
 - b) Let $R \subseteq \omega \times \omega$ be r.e. and satisfy the following conditions:

$$\bigcup_{k \in \omega} R_k = \omega \quad \text{and} \quad R_k \cap R_l = \emptyset \text{ whenever } k \neq l$$

Prove that R is recursive. (Recall that $R_k = \{l : R(k, l) \text{ holds}\}$).

- •5. a) Let $X \subseteq \omega$ be r.e. but not recursive. Let $\varphi(x)$ be a Σ-formula in the language $L = \{+, \cdot, <, S, \bar{0}\}$ that defines X in $(\omega, +, \cdot, <, S, 0)$. Prove that there is some consistent theory $T \supseteq Q$ such that $T \vdash \varphi(\bar{n})$ for some $n \notin X$.
 - b) Prove that there is a partial recursive function f that cannot be extended to a total recursive function (i.e., there is no total recursive function g such that g(k) = f(k) whenever f(k) is defined).
 - 6. a) Prove that there is some $e \in \omega$ such that $\{e\}(2e) = 3e + 1$.
 - b) Let $A = \{ [\sigma] : \sigma \text{ is a sentence of } L = \{+, \cdot, <, S, \bar{0} \}$ and $\models \sigma \}$. Prove that A is a complete r.e. set.

LOGIC

- 1. a) Let L be a countable language containing at least the binary relation symbol E, and let T be a theory of L so that $E^{\underline{A}}$ is an equivalence relation on A for every modelAof T. Assume that whenever A is a model of T and B is an elementary extension of A then every element of (B — A) has Its $E^{\underline{B}}$ -class contained in (B — A). Prove that there is some integer n such that in every model A of T every $E^{\underline{A}}$ -class has size < n.
 - b) Let T be a consistent theory in the countable language L and let $\overline{\Phi}(\infty)$ and $\overline{\Psi}(\infty)$ be types consistent with T. Assume that for every model <u>A</u> of T we have $\Psi^{\underline{A}} = A - \underline{\Phi}^{\underline{A}}$. Prove that there is some formula $\varphi(\alpha)$ such that $\overline{\underline{\mathcal{B}}}^{\underline{A}} = \varphi^{\underline{A}}$ for every model <u>A</u> of T.
- 2. Let T be a complete theory in a countable language L and let $\overline{\underline{P}}$ (x) be a complete type of T. Assume that T has models <u>A</u> and <u>B</u> so that $\left|\overline{\underline{P}}^{\underline{A}}\right| = 1$ and $\left|\overline{\underline{\Phi}}^{\underline{B}}\right| = 2$.
 - a) Prove that T has a model omitting $\overline{\mathcal{F}}$.
 - b) Prove that T has a model <u>C</u> so that $\overline{\underline{D}}^{\underline{C}}$ is infinite.
- 3. a) Prove that $(\omega, +)$ has no proper elementary substructures.
 - b) Let T be a complete ω -categorical theory in a countable language. Prove that there is an integer n such that for every formula $\varphi(\mathbf{x})$ and every model <u>A</u> of T, if $\varphi^{\underline{A}}$ is finite than $|\varphi^{\underline{A}}| < n$.

logic -- 2

- 4. a) For any $R \subseteq \omega \times \omega$ we define $R_k = \{1 : R(k, 1) \text{ holds}\}$. Assume that R is r.e. and $\bigcup_{k \in \omega} R_k = \omega$. Prove that there is some recursive $S \subseteq R$ such that $\bigcup_{k \in \omega} S_k = \omega$ and further $S_k \cap S_l = \emptyset$ whenever $k \neq 1$.
 - b) Let A, B $\subseteq \omega$ and assume that B is r.e. but not recursive and that B $\leq_m A$. Prove that A contains an infinite r.e. subset.
- 5. a) Prove that $\{e : W_e \neq \omega\} \leq \{e : W_e \text{ is finite}\}.$
 - b) Let A_n be arbitrary subsets of ω for every n in ω . Prove that there is some $B \subseteq \omega$ such that $A_n \leq_T B$ for every n.
- 6. a) Prove that REC = {e : W_e is recursive} is \sum_{3}^{o} .
 - b) Prove that $A \leq T \{ [\sigma] : N \models \sigma \}$ for every arithmetic $A \subseteq \omega$, where N is the standard model of arithmetic on the natural numbers.

LOGIC

- a) Let L be a language containing at least the binary relation symbol
 E. Let <u>A</u> be an L-structure in which E is interpreted as an equivalence relation on the universe. Assume that every element of every elementary extension of <u>A</u> belongs to the E-class of some element of A. Prove that there are just finitely many E-classes in <u>A</u>.
 - b) Let L and L' be languages with $L \subseteq L'$. Let T' be an L'-theory, and let <u>A</u> be an L-structure. Assume that there is no model of T' whose \tilde{L} reduct is elementarily equivalent to <u>A</u>. Prove that there is some L-sentence σ such that $A \models \sigma$ and T' $\models \neg \sigma$.
- 2. a) Let T be a complete theory of a language L and let $\overline{\Phi}$ (x) be an Ltype. Assume that $\overline{\Phi}$ is realized by at most one element in every model of T. Prove that there is some formula φ (x) such that $\overline{\Phi}^{\underline{A}} = \varphi^{\underline{A}}$ for every model \underline{A} of T.
 - b) Let <u>A</u> be the countable model of an ω -categorical theory in a countable language L. Let X be a subset of A fixed by all automorphisms of <u>A</u> (that is, if a \in X then h(a) \in X for every automorphism h of <u>A</u>). Prove that X is definable in <u>A</u> by some L-formula. (You may assume that if (<u>A</u>,a) \equiv (<u>A</u>,b) then (<u>A</u>,a) \cong (<u>A</u>,b), and also the Ryll-Nardzewski characterization of ω -categorical theories).

- a) Prove that Th((Z,+)) does not have a countable ω-saturated model.
 b) Let L be a countable language containing at least a binary relation symbol E. Let T be an L-theory stating (among other things) that E is an equivalence relation on the universe. Assume that T has a model A with the property that every L-formula φ(x) satisfiable on
 - \underline{A} is satisfiable by some element of A from a finite E-class. Prove that T has a model in which all E-classes are finite.
- 4. a) Let R be a binary relation on ω which is r.e. but not recursive. Assume that $R_k \cap R_k = \emptyset$ for all $k \neq 1$ (where $R_k = \{n: R(k,n) \text{ holds}\}$). Prove that $\bigcup_{k \in \omega} R_k$ is not recursive.
 - b) Let A = { []] ? ? ? ? Where Q is the theory of the language of arithemetic used in undecidability results. Prove that every r.e. set of natural numbers is many-one reducible to A.
- 5. a) Assume $X \subseteq \omega$ is such that $\{e: W_e = \omega\} \subseteq X$ and $\{e: W_e = \emptyset\} \cap X = \emptyset$. Prove that X is not recursive.
 - b) Prove that $B = \{e: \{e\}(2e) = 3\}$ is a complete r.e. set.
- 6. a) Assume that $B \subseteq \omega$ is infinite but contains no infinite r.e. subset. Assume that A is r.e. and $A \leq_m B$. Prove that A is recursive.
 - b) Recall that $COF = \{e: (\omega w_e) \text{ is finite}\}$ Prove that COF is r.e. in β ''.

LOGIC

- 1. a) Prove that (Z, <) has no proper elementary submodels.
 - b) Let T be a complete theory in a countable language L containing (at least) a binary relation symbol E such that in every model of T, E is interpreted as an equivalence relation on the universe. Assume that in every ω -saturated model of T there is exactly one infinite E-class. Prove that there is some integer n such that in every model of T every E-class with > n elements is infinite.
- 2. a) Let T be a consistent theory in a countable language L. Assume that for all formulas arphi(x) of L we have

 $T \models \forall x \varphi(x) \text{ iff } T \models \varphi(c) \text{ for all constants } c \text{ of } L.$ Prove that T has a model <u>A</u> such that A = {c^A : c \in L}.

- b) Let <u>A</u> be any L-structure and assume that <u>A</u> realizes exactly three different complete types. Show that the same is true for every L-structure <u>B</u> elementarily equivalent to <u>A</u>.
- 3. a) Let T be a complete theory in a countable language L and let <u>A</u> be a countable atomic model of T. Assume that a and b are elements of A with the same complete type. Prove that <u>A</u> has an automorphism f such that f(a) = b.
 - b) Let T be a complete theory in a countable language L. Assume there are only finitely many complete types $\overline{\Phi}(x)$ in a single variable x consistent with T. Prove that there are only finitely many formulas $\varphi(x)$ of L up to equivalence with respect to T.

logic -- page 2

- 4. a) Let A and B be disjoint r.e. sets of natural numbers, and assume neither of them is recursive. Prove that $(A \cup B)$ is not recursive.
 - b) Prove that any theory T with an r.e. set of axioms also has a recursive set of axioms.
- 5. a) Let T be a theory in a countable language L and assume that $\{n \in \omega : T \text{ has a model of cardinality } n\}$ is not recursive. Prove that T is undecidable.
 - b) Let T be a consistent recursively axiomatizable theory in the usual language for arithmetic on the natural numbers. Assume that X is weakly representable in T by $\varphi(x)$ and that X is not recursive. Prove that there is some consistent recursively axiomatizable theory T' containing T such that X is not weakly representable in T' by $\varphi(x)$.
- 6. a) Prove that there are r.e. subsets A and B of ω which are disjoint but there is no recursive set C with A \subseteq C and (B \cap C) = \emptyset
 - b) Prove that {e : W_e is infinite} \leq_m {e : $W_e = \omega$ }. [Hint: first define a partial recursive function g(e,x) which converges iff {e}(y) converges for some y > x]

UNIVERSITY OF MARYLAND GRADUATE WRITTEN EXAMINATION August 1996

LOGIC

- 1. a) Let <u>A</u> be an L-structure and let $\varphi(x)$ be a formula of L. Prove that $\varphi^{\underline{A}}$ is finite iff $\varphi^{\underline{A}} = \varphi^{\underline{B}}$ for every elementary extension <u>B</u> of <u>A</u>.
 - b) Let T be a complete theory in a countable language L, let <u>A</u> be an ω -saturated model of T, and let $\overline{\Phi}(x)$ and $\overline{\Psi}(x)$ be L types. Assume that $\underline{\Psi}^{\underline{A}} = A - \underline{\Phi}^{\underline{A}}$. Prove that there is some formula $\Psi(x)$ of L such that $\underline{\Phi}^{\underline{A}} = \varphi^{\underline{A}}$.
- 2. a) Let T be a countable language whose non-logical symbols include the binary relation <. Let T be a consistent theory of L such that $< \frac{A}{}$ is a linear order of A for every model <u>A</u> of T. Assume that whenever <u>A</u> is a model of T there are a, b in A such that the $< \frac{A}{}$ -interval between a and b is infinite. Prove that there is some formula $\varphi(x,y)$ of L consistent with T such that whenever <u>A</u> is a model of T there are $< \frac{A}{}$ -interval between a and b is infinite.
 - b) Let L and L' be languages with $L \subseteq L'$, let T_1' and T_2' be theories of L' which contain precisely the same sentences of L, and let T be a theory of L. Prove that some model of T can be expanded to a model of T_1' , iff some model of T can be expanded to a model of T_2' .
- 3. a) Let <u>A</u> be any L-structure, let L' = L(A) and let T' = Th(<u>A</u>). Let <u>B</u>' be an L'-structure which is a model of T'. Assume that <u>B</u>' is an atomic model of T'. Prove that <u>B</u>, the L-reduct of <u>B</u>', is isomorphic to <u>A</u>.
 - b) Let T be a complete ω -categorical theory in a countable language L. Prove that there is some integer k such that for every formula $\varphi(x)$ of L and every model <u>A</u> of T, if $|\varphi^{\underline{A}}| > k$ then $\varphi^{\underline{A}}$ is infinite.

- 4. a) Assume that $R \subseteq \omega_x \omega$ is r.e. and defines a strict linear order on ω with no last element (so R(k,k) fails for all k). Prove that there is a strictly increasing recursive function f such that R(f(k), f(k+1)) holds for all k.
 - b) Let the non-logical symbols of L be $\{+, \cdot, <, s, \overline{0}\}$ and let <u>N</u> be the standard L-structure for arithmetic on the natural numbers. Prove that there is <u>no</u> listing $\{\varphi_n(x) : n \in \omega\}$ of all the formulas of L with x free such that $X = \{n : \underline{N} \models \varphi_n(\overline{n})\}$ is recursive.
- 5. a) Let L have as its only non-logical symbol the binary relation E and let T_O be the L-theory asserting that E is an equivalence relation on the universe with infinitely many classes. Prove that there is a complete L-theory T which extends T_O and is undecidable.
 - b) Let A be a non-empty r.e. subset of ω and define I = {e : A = W_e}. Prove that every r.e. set B is many-one reducible to I.
- 6. a) Let L be a language with finitely many non-logical symbols and let L' = L U {c} where c is an individual constant symbol not in L. Let <u>A'</u> be a strongly undecidable L'-structure and let <u>A</u> be its reduct to L. Prove that Th(<u>A</u>) is an undecidable L-theory.
 - b) Let REC = {e : W_{ρ} is recursive}. Prove that REC is r.e. in p''.

January 1996

LOGIC

- 1. a) Let L be a language whose non-logical symbols include the binary relation E. Let T be a theory of L such that $E^{\underline{A}}$ is an equivalence relation on A for every model <u>A</u> of T. Assume that in every model <u>A</u> of T there is exactly one infinite $E^{\underline{A}}$ -class. Prove that there is some n in ω such that in every model <u>A</u> of T all finite $E^{\underline{A}}$ -class have at most n elements.
 - b) Let T be a complete theory of some language L and let $\overline{\Phi}$ (x) be an L-type consistent with T. Assume that $\overline{\Phi}$ is omitted on some model of T. Prove that $\overline{\Phi}$ is realized in some model of T by at least two different elements.
- 2. a) Let T be a complete theory in a countable language L and let <u>A</u> be the prime model of T. Let $\overline{\Phi}$ (x) be any L-type. Prove that there is some L-type $\overline{\Psi}$ (x) such that $\overline{\Psi} \stackrel{\underline{A}}{=} A - \overline{\Phi} \stackrel{\underline{A}}{=}$.
 - b) Let L be a countable language and let L' = L $\cup \{c_1, \ldots, c_k\}$ where c_1, \ldots, c_k are individual constants not in L. Let T and T' be complete theories of L and L' respectively and assume T \subseteq T'. Prove that T has a countable universal model iff T' has a countable universal model.
- 3. a) Let L be a countable language. An L-structure <u>A</u> is said to be <u>locally finite</u> iff every element of A belongs to a finite L-definable subset of A. Let T be a complete L-theory and assume that no model of T is locally finite. Prove that there is some L-formula $\varphi(x)$ consistent with T such that for every L-formula $\psi(x)$ and every model A of T $\frac{A}{2} = \frac{A}{2} \frac{A}{2}$ is infinite provided it is not empty

- b) Let T be a complete theory in a countable language L. Let <u>A</u> be a countable model of T which is not prime and let $\overline{\Phi}(x)$ be a type omitted on <u>A</u>. Prove that there is some countable model of T which also omits $\overline{\Phi}$ but is not isomorphic to <u>A</u>. [Warning: You cannot assume that T has a prime model.]
- 4. a) Assume that A and B are r.e. subsets of ω such that $A \cup B$ is recursive. Prove that there are recursive sets $A' \subseteq A$ and $B' \subseteq B$ such that $A \cup B = A' \cup B'$.
 - b) Recall that if 𝒢(x) is a Σ-formula (in the language for arithmetic on the natural munbers) and if Q + ∃x 𝒢(x) then Q + 𝒢(n̄) for some n in ω. Prove that there is no total recursive function f such that whenever 𝒢(x) is a Σ-formula and Q + ∃x 𝒢(x) then Q + 𝒢(n̄(k̄)) where k = 「𝒢].
 [Hint: Let 𝒢(x,y) be a Σ formula representing in Q the relation "x is the Godel number of a proof from Q of the sentence whose Godel number is y" and consider the formulas 𝒢₁(x) = 𝒢(x,1).]
- 5. a) Given a language L_1 let $L_2 = L_1 \cup \{c\}$ where c is an individual constant not in L_1 . Let T_2 be a finitely axiomatizable essentially undecidable theory of L_2 and let $T_1 = T_2 \cap Sn_1$. Prove that T_1 is also essentially undecidable.
 - b) Prove that {e : W_e ≠ ω } ≤ { {e : W_e is finite}.
 [Hint: First define a partial recursive function f(e,x) which converges iff {e}(y) converges for all y < x.]
- 6. a) Let A and B be subsets of ω . Prove that B is A-r.e. iff $B \leq_m A'$ where A' is the jump of A.
 - b) Let $C = \{ \ulcorner \sigma \urcorner : \underline{N} \models G \}$ where \underline{N} is the standard model of arithmetic on the natural numbers. Prove that $A \leq_{T} C$ for all arithmetic sets A, and use this to conclude that C is not arithmetic.

LOGIC

- 1. a) Given a theory T and a sentence Θ of L, assume that for every model <u>A</u> of T, A $\models \Theta$ iff A is finite. Prove that there is some $n \in \omega$ such that for every model <u>A</u> of T, A $\models \Theta$ iff A has at most n elements.
 - b) Let <u>A</u> and <u>B</u> be L-structures and assume that <u>B</u> is a proper elementary extension of <u>A</u>. Assume further that there is an L-formula $\mathcal{P}(x,y)$ such that $A = \left\{ b \in B : \underline{B}_{B} \neq \mathcal{P}(\overline{b}, \overline{b}_{0}) \right\}$ for some b_{0} in B. Prove that $b_{0} \notin A$.
- 2. a) Let $T = Th((Q, +, \cdot, <, 0, 1))$. Prove that T does not have a countable saturated model.
 - b) Let T be a complete L-theory, let L' be a language containing L and let T' be an L'-theory containing T. Assume that A is a model of T which has an elementary extension which can be expanded to an L'structure which is a model of T'. Prove that <u>every model B</u> of T has an elementary extension which can be expanded to a model of T'.
- Let L be a countable language containing (at least) a binary relation symbol ≤ and individual constants c_n for all n∈ω. Let T be a complete theory of L containing (at least) the axioms that ≤ is a linear order of the universe and c_n ≤ c_{n+1} for all n ∈ ω. Call a model A of T standard if for every a ∈ A there is some n ∈ ω such that A ⊨ ā ≤ c_n. Let A* be an ω-saturated model of T.
 a) Prove that if A* is standard then there is some n ∈ ω such that A ⊨ ∀ x (x ≤ c_n).

b) Assume that for every L-formula $\mathcal{P}(x)$ such that $\underline{A}^* \models \exists x \mathcal{P}(x)$ there is some $n \in \omega$ such that $\underline{A}^* \models \exists x [\mathcal{P}(x) \land x \leq c_n]$. Prove that T has a standard model.

- 4. Let T be a recursively axiomatized extension of the theory Q which is true on $\underline{N} = (\omega, +, \cdot, <, 0, s)$. Let R $\subseteq \omega \times \omega$ be representable in T by the $\overline{\subseteq}$ -formula $\varphi(x, y)$. Let X = {k : $\exists 1 \ R(k, 1) \ holds$ }.
 - a) Show X is weakly representable in T by \exists y φ (x,y).
 - b) Assume X is not recursive. Prove that there is some $k \in \omega$ such that $T \models \neg \varphi(\overline{k}, \overline{1})$ for all $l \in \omega$ but $T \not\models \forall y \neg \varphi(\overline{k}, y)$.
- 5. a) Let \mathcal{F} be a set of partial recursive functions of one argument, and let $I = \{e : \{e\} \in \mathcal{F}\}$. Prove that $I \notin_{m}(\omega - I)$.
 - b) Let A and B be subsets of ω . Assume B is r.e. but not recursive and that $B \leq M$ A. Prove that A contains an infinite r.e. subset.
- 6. a) Let L_0 be the language with no non-logical symbols.
 - i) Show that there is a theory T_O of L_O which is undecidable.
 - ii) Can there be an undecidable L_0 -theory T_0 which has only finite models? Explain.
 - b) Let X be an r.e. subset of ω . Let $I = \{e : W_e = X\}$. Prove that I is $\prod_{i=1}^{\infty}$.