STATISTICS SEMINAR

Date and time: Thursday, September 23, 2010
Time and place: 3:30 PM,, MTH 1313
Speaker: Abram Kagan

Title: On estimating the multinomial parameter

Abstract

If a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{m}\right)$ has a multinomial distribution with parameters $\left(n ; \theta=\left(\theta_{1}, \ldots, \theta_{m}\right)\right)$, the matrix of Fisher information on θ in \mathbf{X} does not exist due to the constraint $\theta_{1}+\ldots+\theta_{m}=1$ (the definition of the information matrix requires that the parameter set be an open subset of \mathbb{R}^{m}). However, we show that the inverse of the information matrix is well defined and the standard estimator $\left(X_{1} / n, \ldots, X_{m} / n\right)$ of θ is not only UMVUE but also Cramér-Rao efficient, a stronger property. Cases when the components of θ are subject to extra constraints are also considered.

