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U-statistic

X1, ..., Xn i.i.d. F unknown. i = (i1, ..., im),
Xi = (Xi1, ..., Xim), Dn,m = {i : 1 ≤ i1 < · · · < im ≤ n},
Cm

n : combination number, Fm(x) =
∏m

j=1 F (xj),
Fn,m(x): empirical distribution function of Fm based on
{Xi : i ∈ Dn,m}, with mass 1/Cm

n at each point. h: m-variate
symmetric kernel. U-statistic:

Un = (Cm
n )−1

∑

i∈Dn,m

h(Xi) = EFn,m
h(X).

Goal: estimate θ = EFm
h(X), U-statistic: the minimal vari-

ance unbiased estimator of θ.
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Empirical Likelihood (EL)

Since Owen (1988), EL has gained increasing popularity:
wide range of applications, simplicity to use, incorporate
side information. Side infor. be incorporated into EL through
a d-dimensional known function g(x) = (g1(x), ..., gd(x))′ with

EF [g(X1)] = 0.

Denote wi = F ({Xi}). EL subject to the side information
constraints:

max
w

n
∏

i=1

wi subject to
n
∑

i=1

wi = 1 and
n
∑

i=1

wig(Xi) = 0.
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Let t = (t1, ..., td)
′: Lagrange multipliers, then

wi =
1

n

1

1 + t′g(Xi)
,

t = t(X1, ..., Xn) determined by

n
∑

i=1

g(Xi)

1 + t′g(Xi)
= 0.

Existence of t as solution to the above equation can be

found, eg. Owen.
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Empirical Weights for U-statistic

wi := Fm({Xi}), w := (wi : i ∈ Dn,m).
Define EL subject to side infor. constraints as

max
w

∏

i∈Dn,m

wi subject to
∑

i∈Dn,m

wi = 1,
∑

i∈Dn,m

wig(Xi) = 0.
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Similarly as before, we get

wi = (Cm
n )−1 1

1 + t′g(Xi)
(2)

t = tn(X1, ..., Xn) determined by

∑

i∈Dn,m

g(Xi)

1 + t′g(Xi)
= 0. (3)
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U-statistic with Side Information

With wi’s given in (2) and (3), we define the U-statistic with
side infor. given by the constraints g as

Ũn =
∑

i∈Dn,m

wih(Xi) = EF̃n,m
h(X). (4)

Comparison: commonly used U-statistic Un has weight

(Cm
n )−1 at each observation h(Xi), with side infor., the

weights are wi.
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Asymptotic Properties of Ũn

Notations

As in Hoeffding (1948), for kernel h(·) with EFm
(h(X)) < ∞,

let hc(x1, ..., xc) = Eh(x1, ..., xc, Xc+1, ..., Xm), ho
c = hc−θ be its

centered version (c = 1, ...,m), h̃1(X1) = ho
1(x1), h̃2(x1, x2) =

ho
2(x1, x2) − h̃1(x1) − h̃1(x2), h̃3(x1, x2, x3) = ho

3(x1, x2, x3) −
∑3

i=1 h̃1(xi) −
∑

1≤i<j≤3 h̃2(xi, xj),
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...

h̃c(x1, ..., xc) = ho(x1, ..., xc) −
c
∑

i=1

h̃1(xi)

−
∑

1≤i<j≤c

h̃2(xi, xj) − · · · −
∑

1≤i1<···<ic−1≤c

h̃c−1(xi1 , ..., xic−1
)

=

∫

· · ·
∫

hc(y1, ..., yc)

c
∏

s=1

d(δxs
(ys) − F (ys)), (c = 1, ...,m),

(Korolyuk and Borovskich, 1994). h̃c: canonical forms of h. Ũn

is of rank k (1 ≤ k ≤ m) if h̃1 = · · · = h̃k−1 = 0 and h̃k 6= 0.

When k > 1 we have θ = 0, and Un (or h) called degenerate.
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Similarly, for g, define

gc(x1, ..., cc) = EFm
g(x1, ..., xc, Xc+1, ...Xm), (c = 1, ...,m)

and canonical forms for g,

g̃c(x1, ..., xc) =

∫

· · ·
∫

gc(y1, ..., yc)
c
∏

s=1

d(δxs
(ys) − F (ys)).

Likewise, let qc be the canonical forms of g(·)h(·)
(c = 1, ...,m). Let ro = min{rank(g1), ..., rank(gd)},
r = rank(h), r1 = min{rank(g1h), ..., rank(gdh)}, and F̃nm be
the empirical distribution with mass wi at the observation xi.
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Regularity Conditions

(C1). Ω := E[g(X)g′(X)] is positive definite.
(C2). E||g(X)||α < ∞ for some α > 0 to be specified.
(C3). EFm

|h(X)| < ∞.
(C4). EFm

h2(X) < ∞.
(C5) EFm

[||g(X)h(X)|| + ||g(X)||2|h(X)|] < ∞.

Note: (C2) with α ≥ 4 and (C4) implies (C5).
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Lemma. Assume (C1) and (C2) for α > 2m/ro, we have (i)

wi
a.s.
=

1

Cm
n

(

1 − g′(Xi)Ω
−1 1

Cm
n

∑

j∈Dn,m

g(Xj)

+g(Xi)O(ρnn−1/2(log log n)1/2)

+[g(Xi) + ||g(Xi)||2]O(ρ2
n)

)

,

where,

ρn =

{

O(n−1/2(log log n)1/2), ro = 1;

o(n−ro/2 log n), 1 < ro ≤ m.
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(ii)

wi =
1

Cm
n

(

1 − g′(Xi)Ω
−1 1

Cm
n

∑

j∈Dn,m

g(Xj)

+g(Xi)Op(n
−(ro+1)/2) + [g(Xi) + ||g(Xi)||2]Op(n

−ro)

)

.

The Op(·) terms above are uniformly for all the xi’s and i’s.
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Strong consistency of Ũn

Theorem 1. (i). Assume the conditions in the Lemma and (C3) and
(C5), if r = 1, then

nq(Ũn − θ) → 0, a.s. for all q < 1/2.

(ii) Assume conditions in the Lemma and (C4) and (C5), if r > 1, then

anŨn → 0, (a.s.), an =



















nq for all q < 1/2, r1 = ro = 1;

nmin{r/2,1}/ log n, r1 > ro = 1;

nmin{ro,r}/2/ log n, 1 = r1 < ro;

nmin{r,ro+r1,2ro}/2/ log n, ro, r1 > 1.
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(iii) Assume (C4) and conditions of Lemma (i), if r = 1, then

lim
n

sup

(

2σ2 log log n

n

)−1/2

|Ũn − θ| = 1, (a.s.)
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Asymptotic distribution of Ũn

W (A): Gaussian random measure, Jr(h): Wiener-Itô
integral of order r (Koroljuk and Borovskich, 1994).

Theorem 2. (i) Assume (C4) and conditions of the Lemma, if r = 1,

√
n(Ũn − θ)

D→ N(0, σ2),

σ2 =

{

m2(η2
1 − 2A′Ω−1A1 + A′Ω−1Ω1Ω

−1A), ro = 1;

m2η2
1, ro > 1;

,

where η2
1 = EF h̃2

1(X1), Ω1 = EF (g̃1(X1)g̃
′
1(X1)),

A = EFm
[g(X)h(X)] and A1 = EF [g̃1(X1)h̃1(X1)].
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(ii) Assume (C4), conditions of Lemma (ii) and r > 1, then

nb/2Ũn
D→ Z, where



































































b = 1, Z = mJ1(A
′Ω−1g̃1), ro = r1 = 1;

b = 2, Z = OP (1), 1 = ro < r1;

b = r, Z = Cr

m
Jr(h̃r − A′Ω−1g̃r), 1 = r1 < ro = r;

b = ro, Z = −Cro

m
Jro

(A′Ω−1g̃ro
), 1 = r1 < ro < r;

b = r, Z = Cr

m
Jr(h̃r), 1 = r1 < r < ro;

b = ro, Z = OP (1), 1 < ro ≤ min{r1, r/2};
b = r, Z = Cr

m
Jr(h̃r) − Cr1

m
Cr0

m
Jr1

(q̃r1
)Ω−1Jro

(g̃ro
), 1 < r1, ro, r = ro + r1;

b = r, Z = Cr

m
Jr(h̃r), 1 < r1, ro, r < ro + r1;

b = ro + r1, Z = −Cr1

m
Cr0

m
Jr1

(q̃r1
)Ω−1Jro

(g̃ro
), 1 < r1, ro, r > ro + r1,
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From Theorem 2 we see that the most interesting case is
r = ro = r1 = 1, in which

√
n(Ũn − θ) is asymptotic

non-degenerate normal, with asymptotic variance being
smaller than that of

√
n(Un − θ). σ2 is the same as that of Un

either when r1 > 1, A = 0, or when ro > 1, A1 = 0 and
Ω1 = 0. Thus, for the side information to be of practical
meaning, we need r = ro = r1 = 1.
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An optimality property of Ũn

f(·|θ): density of X given θ, θn = θ + n−1/2b for some b ∈ C.
An estimator Tn = Tn(X1, ..., Xn) is regular, if under f(·|θn),

Wn :=
√

n(Tn − θn)
D→ W for some W , independent of {θn}.

Let Z ⊕ U : convolution of Z and U , I(θ): Fisher infor at θ,
and Z ∼ N(0, I−1(θ)). Convolution Theorem (Hájek, 1970):
for any regular Tn with weak limit W , there is a U such that

W = Z ⊕ U.

The optimal weak limit: a normal random variable with
mean zero and variance I−1(θ).

Now let I(θ|g): infor. bound for estimating θ given side infor.

in g.
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Theorem 3. Assume r = ro = 1, (C4) and conditions in the Lemma ,
we have

(i) I(θ|g) = η2
1−A′

1Ω
−1
1 A1.

Thus, if we set g(x) = (g(x1) + · · · + g(xm))/m, then rank(g) = 1,

A = mA1, Ω = mΩ1, σ2 = m2
I(θ|g) and Ũn is efficient.

(ii) Assume further that f(·|θ) has second order continuous partial
derivative with respect to θ, then for any regular estimator Tn with weak
limit W of Wn :=

√
n(Tn − θ), W can be decomposed as, for some U ,

W = Z ⊕ U, with Z ∼ N(0, I(θ|g)).

U-Statistic with Side Information – p.21/42



U-statistic with side information of the form Ũn is regular,
thus is optimal in the sense of convolution under the
conditions of Theorem 3. Without side infor, asymptotic
variance of

√
n(Un − θ) is η2

1; with side infor, asymptotic
variance of

√
n(Ũn − θ) is η2

1 − A′
1Ω

−1
1 A1, with a reduction of

A′
1Ω

−1
1 A1.
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I(θ|g): length of projection of h̃1(X) onto [g̃1(X)⊥], the lin-

ear span of the orthogonal complements of g̃1(X). Increas-

ing the components in g (and thus in g̃1) shrinks the space

[g̃1(X)⊥], and shortens the length of the projection or in-

creases the efficiency of Ũn, or increasing the number of

information constraints reduces the asymptotic variance of

the U-statistic.
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Uniform SLLN and CLT of Ũn-processes

Let P̃n,m, Pn,m, Pm and P be the (random) probability
measures induced by F̃n,m, Fn,m, Fm and F respectively.
For a function h, denote P̃n,mh =

∑

i∈Dn,m
wih(Xi),

Pmh = EPm
h(X), G̃n,mh =

√
n(P̃n,mh − Pmh) and

Gn,mh =
√

n(Pn,mh − Pmh). For fixed h and g, we have
shown that, under suitable conditions,

P̃n,mh → Pmh = Ph̃1 (a.s.) and G̃n,mh
D→ N(0, σ2)

with σ2 = σ2(h) = Ph̃2
1 − P (g̃′1h̃1)Ω

−1
1 P (g̃1h̃1).
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In contrast, Gn,mh
D→ N(0, η2

1) with η2
1 = Ph̃2

1. So
incorporating the side information g reduces the asymptotic
variance by the amount P (g̃′1h̃1)Ω

−1
1 P (g̃1h̃).

It is of interest to have a uniformly version of the above SLLN

and CLT over a class of functions H.
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Theorem 4. (i) Under the conditions of Theorem 1(i), and some further
conditions, we have

sup
h∈H

|P̃n,mh − Pmh| = 0, (a.s.∗).

(ii) Under the conditions of Theorem 3(ii), and further conditions, then

G̃n,m
D⇒ G in L∞(H),

where G is a Gaussian process indexed by H, with EP (Gh) = 0 and

CovP (Gh, Gq) = P (h̃1q̃1) − P (g̃′1h̃1)Ω
−1
1 P (g̃1q̃1) for all h, q ∈ H.
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Empirical Likelihood Ratio for U-stat. with Side Infor.

Let G(x|θ) = (g′(x), h(x) − θ)′, then EFm
G(X|θ) = 0. We

define the empirical log likelihood ratio of θ with presence of
side infor by

RG(θ) = Ln(θ)/(Cm
n )−Cm

n =
∏

i∈Dn,m

(Cm
n wi),

where

Ln(θ) = max
P

i∈Dn,m
wi=1,

P

i∈Dn,m
wiG(Xi|θ)=0

∏

i∈Dn,m

wi
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and denote

l(θ) = − log RG(θ) =
∑

i∈Dn,m

log[1 + t′G(Xi|θ)].

Let Λ = EFm
(G(x|θ)G′(X|θ)) =

(

Ω A

A′ η2

)

, η2 = V ar(h(X));

and Λ1 = Cov(G̃1), G̃1 the first canonical form (vector) of G.
Without side infor, G(·|θ) reduces to h(·)− θ, and t is a scalar
determined by

∑

i∈Dn,m
(h(Xi) − θ)/[1 + t(h(Xi) − θ)] = 0.

The corresponding log-likelihood ratio is

lh(θ) =
∑

i∈Dn,m

log[1 + t(h(Xi) − θ)].
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Theorem 5. (i) Under conditions of Theorem 2(i) or Theorem 3(i) and
assume Λ to be positive definite, then

2n

m2Cm
n

l(θ)
D→ Z ′

d+1Λ
1/2
1 Λ−1Λ

1/2
1 Zd+1, Zd+1 ∼ N(0, Id+1).

(ii) Assume (C4), then

2nη2

m2Cm
n η2

1

lh(θ)
D→ χ2

1.
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When m = 1, Λ
1/2
1 = Λ1/2 and the above result for U-statistic

automatically reduces to that for the common EL ratio, and

the right hand side in Theorem 5(i) is χ2
d+1.
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Corollary. If EFm
g(X) = δ 6= 0, then

(i) Under conditions of Theorem 1(i),

Ũn − θ → A′Ω−1δ.

(ii) Under conditions of Theorem 2(i),

√
n(Ũn − θ − A′Ω−1δ) ≈ N(0, σ2).

(iii) If EFm
G(X) = δ 6= 0, then under conditions of Theorem 5(i),

− 2n

Cm
n

RG(θ) ≈ Z ′
d+1Λ

1/2
1 Λ−1Λ

1/2
1 Zd+1, Zd+1 ∼ N(

√
nΛ

−1/2
1 δ, Id+1),

when Λ = Λ1, Z ′
d+1Λ

1/2
1 Λ−1Λ

1/2
1 Zd+1 = χ2

d+1(nδ′Λ−1δ), the

chi-squared distribution of degree d + 1 with noncentrality parameter

nδ′Λ−1δ.
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Examples

Example 1

θ(F ) =
∫

(x − µ)2dF (x) be the variance, µ the mean. Let

µk, k ≥ 2 be the k-th moment of F . For the kernel h(x1, x2) =

(x1 − x2)
2/2, we have h̃1(x1) = [(x1 −µ)2 − θ]/2, η2 = E(h2)−

θ2 = (µ4 + θ2)/2, η2
1 = E(h̃2

1) = (µ4 − θ2)/4. Without side infor,

the asymptotic variance of Un based on kernel h(x1, x2) is

σ2
0 = 4η2

1 = µ4 − θ2, the same as that for the sample variance

estimator θn :=
∑n

i=1(Xi − X)2.
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If we know that F has median at 0: F (0) = 1/2, we take

g(x1, x2) = [I(x1 ≤ 0) + I(x2 ≤ 0)]/2 − 1/2. Then g̃1(x1) =

[I(x1 ≤ 0)−1/2]/2, A1 = E(g̃1h̃1) = [
∫ 0
−∞(x−µ)2dF (x)−θ/2]/4,

and Ω1 = E(g̃2
1) = 1/16. So by Theorem 3(i), the asymptotic

variance of Ũn is now σ2 = σ2
0 − A2

1Ω
−1
1 = 4η2

1 − [
∫ 0
−∞(x −

µ)2dF (x)− σ2/2]2, a deduction of [
∫ 0
−∞(x− µ)2dF (x)− σ2/2]2

from σ2
0.
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Example 2

Wilcoxon one-sample statistic θ(F ) = PF (x1 +x2 ≤ 0), kernel

for corresponding U-statistic: h(x1, x2) = I(x1+x2 ≤ 0). Then

h̃1(x1) = F (−x1) − θ, η2
1 = EF (h̃1(x1)) =

∫

F 2(−x)dF (x) −
θ2. Without side infor, asymptotic variance of Un based on

h(x1, x2) is σ2
0 = 4η2

1.
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If we know the distribution is symmetric about a > 0: F (x −
a) = 1−F (a−x) for all x. Take g(x1, x2) = [I(x1 ≤ 0)+I(x1 ≤
2a) + I(x2 ≤ 0) + I(x2 ≤ 2a)]/2− 1, then g̃1(x1) = [I(x1 ≤ 0) +

I(x1 ≤ 2a)]/2 − 1/2, Ω1 = F (−a)/2, A1 = [
∫ a
−∞ F (−x)dF (x) +

∫ −a
−∞ F (−x)dF (x)]/2 −

∫

F (−x)dF (x)/2, and the deduction of

asymptotic variance is A2
1Ω

−1.
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Example 3

Gini difference: θ(F ) = EF |x1 − x2|. corresponding kernel
for U-stat.: h(x1, x2) = |x1 − x2|. Then
h̃1(x1) =

∫∞
x1

xdF (x) −
∫ x1

−∞ xdF (x) − θ,

η2
1 =

∫

(

∫∞
x1

xdF (x) −
∫ x1

−∞

)2

dF (x1) − θ2. Without side infor,

asymptotic variance of Un based on kernel h(x1, x2) is
σ2

0 = 4η2
1.
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If we know the distribution mean µ, and take g(x1, x2) = (x1+

x2)/2 − µ, then g̃1(x1) = (x1 − µ)/2, Ω1 =
∫

(x − µ)2dF (x),

A1 = {
∫

x1[
∫∞
x1

xdF (x) −
∫ x1

−∞ xdF (x)]dF (x1) − θ}/2, and the

deduction of asymptotic variance is A2
1Ω

−1.
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Simulation Studies

Consider Examples 1 and 2 above.

Example 1

Table 1: asymp variance estimation of U-stat. X ∼
exp(1) − ln(2)

Method n=50 n=100 n=150 n=200

Without side infor 8.5239 7.8569 7.3839 7.1557

With side infor 8.4572 7.5524 7.2673 7.0791

Variance reduction 0.0667 0.3045 0.1165 0.0766
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Example 2

Table 2: asymp variance estimation of U-stat. X ∼
N (1, 4)

Method n=50 n=100 n=150 n=200

Without side infor 0.2413 0.2208 0.2199 0.2203

With side infor 0.0548 0.0526 0.0527 0.0572

Variance reduction 0.1865 0.1682 0.1673 0.1631

U-Statistic with Side Information – p.39/42



From Tables 1 and 2 we see reductions of the variance of

estimating θ. Sometimes the reduction is significant, like in

Example 2, which means the proposed method gives more

accurate estimation.
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Summary

U-stat side infor., via EL approach;

some asymp behavior

smaller asymp. variance.

efficiency

confi. intervals using such U-stat. via EL ratio.
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