COMMON TI-83, TI-84 PROGRAM EXPRESSIONS

KEY IN	DISPLAY	EXPLANATION
2nd ALPHA word	WORD	Note that the letters are capitalized when displayed.
PRGM $\rightarrow 3$	Disp	Display whatever follows, in quotes.
PRGM $\rightarrow 1$	Input	As the program is executed, a ? appears, and then we
need to key in a number for A.		

Note that α denotes the ALPHA key

TI-83, TI-84 PROGRAM FOR LEFT SUMS

(The above expressions are in italics; press ENTER at the end of each line.)

PRGM $\rightarrow \rightarrow$ ENTER RIEMANN	Prgm 1: RIEMANN	Program named RIEMANN
VARS $\rightarrow 42$	FnOff	Deselects all $\mathrm{Y}=$ functions
Disp 2nd α "LOWERLM"	Disp "LOWERLM"	Lower limit of integration
Input $\alpha \mathrm{A}$	Input A	After ?, type in the lower limit of integration
Disp 2nd α "UPPERLM"	Disp "UPPERLM"	Upper limit of integration
Input $\alpha \mathrm{B}$	Input B	After ?, type in the upper limit of integration
Disp 2nd α " N SUBINT"	Disp "N SUBINT"	Number of subintervals for [A, B] is N
Input $\alpha \mathrm{N}$	Input N	After ?, type in the number of subintervals
$0 \mathrm{STO} \alpha \mathrm{L}$	$0 \rightarrow \mathrm{~L}$	0 is stored in location L
$(\alpha B-\alpha A) \div \alpha N$ STO αH	$(\mathrm{B}-\mathrm{A}) / \mathrm{N} \rightarrow \mathrm{H}$	Subinterval width (B-A)/N is stored in location H
1 STO α J	$1 \rightarrow \mathrm{~J}$	1 is stored in location J
Lbl 1	Lbl 1	Start of loop
Y1 $(\alpha \mathrm{A}+(\alpha \mathrm{J}-1) \alpha \mathrm{H}) * \alpha \mathrm{H}+\alpha \mathrm{L}$ STO $\alpha \mathrm{L}$	$\mathrm{Y} 1(\mathrm{~A}+(\mathrm{J}-1) \mathrm{H}) * \mathrm{H}+\mathrm{L} \rightarrow \mathrm{L}$	Left subinterval endpoint stored in location L
$I S>\alpha \mathrm{J}, \alpha \mathrm{N})$	IS > (J,N)	Increment J one step. If $\mathrm{J}>\mathrm{N}$, skip next command
Goto 1	Goto 1	Program returns to Lbl 1 and loops again
Disp $\alpha \mathrm{L}$	Disp L	Program's last line, which displays L

To execute the program in order to evaluate $\int_{A}^{B} f(x) d x$, do the following:
2nd CLEAR (to quit the program) $\mathrm{Y}=$ (key in your function) ENTER 2nd QUIT PRGM \# ENTER
Key in A ENTER (for lower limit), B ENTER (for upper limit), N ENTER (for number of intervals into which [A, B] is divided). The display reads the left sum for the integral. To execute the program again, key in ENTER .

How can you compute right sums? Midpoint sums?

COMMON TI-86 PROGRAM EXPRESSIONS

We will write α for the ALPHA key.

KEY IN	DISPLAY	EXPLANATION
$\alpha \alpha$ word	WORD	Locks into the alphabet key.
I/O MORE MORE "	Quotation mark	
α STO x-VAR	The number L is stored in location X.	
		TI-86 PROGRAM FOR LEFT SUMS

Key in A ENTER (for lower limit), B ENTER (for upper limit), N ENTER (for number of intervals into which [A, B] is divided). The display reads the left sum for the integral. To execute the program again, key in ENTER .

How can you compute a midpoint sum? A right sum?

COMMON TI-89 PROGRAM EXPRESSIONS
In the instructions below, α denotes the ALPHA key.

KEY IN	DISPLAY	EXPLANATION
$\alpha \alpha$ word	WORD	Locks into the alphabet key
2nd 1		Quotes (needed at beginning of all text to be displayed) $\alpha(-)$
PL STO x-VAR $\mathrm{L} \rightarrow \mathrm{X}$	Produces a space in text	
F3 2	Display	
F3 3	Input	

TI-89 PROGRAM FOR LEFT SUMS

(Press ENTER at the end of each line.)

APPS 73 (arrows down to variable)	riemann() riemann()	Program named riemann()
Display " $\alpha \alpha$ LOWERLM"	Disp "lowerlm"	Lower limit of integration
Input α A	Input a	After ?, type in the lower limit of integration
Disp " $\alpha \alpha$ UPPERLM"	Disp "upperlm"	Upper limit of integration
Input α B	Input b	After ?, type in the upper limit of integration
Disp " $\alpha \alpha$ N SUBINT"	Disp "n subint"	Number of subintervals for [a, b] is n
Input $\alpha \mathrm{N}$	Input n	After ?, type in the number of subintervals
0 STO α L	$0 \rightarrow 1$	the number 0 is stored in location 1 (letter l)
$(\alpha B-\alpha A) \div \alpha N$ STO H	$(\mathrm{b}-\mathrm{a}) / \mathrm{n} \rightarrow \mathrm{h}$	Subinterval width (b-a)/n is stored in location h
1 STO J	$1 \rightarrow \mathrm{j}$	The number 1 is stored in location j
F2 $4 \alpha \mathrm{~J}, 1, \mathrm{~N}$	For (J, 1,N	Start of loop (also enters line EndFor)
$\mathrm{y} 1(\alpha \mathrm{~A}+(\alpha \mathrm{J}-1) \alpha \mathrm{H}) \alpha \mathrm{H}+\alpha \mathrm{L}$ STO	$\alpha \mathrm{L} \quad \mathrm{y} 1(\mathrm{a}+(\mathrm{j}-1) \mathrm{h}) \mathrm{h}+\mathrm{l} \rightarrow 1$	Compute y 1 at left endpoint, multiply by h and add to value in 1 , then store in 1
F2 EndFor	EndFor	Program returns to CTL line and loops again. This line is already in the program]
Move cursor to end of EndFor line and press ENTER		
Disp " $\alpha \alpha$ LOWER SUM "	"lower sum"	Label for lower sum
I/O Disp $\alpha \mathrm{L}$	Disp 1	Program's last line, which displays L

Enter the function in the $\mathrm{Y}=$ menu as y 1 . From the Home screen type in the name of the program riemann() (you must include the parentheses). After the prompt for each input, enter the values for a, b, and n followed by ENTER.

What changes do you need to make to compute right sums? Midsums?

