## Complex Numbers and Series

Here are the central concepts and results in our unit on complex numbers and series, which can be found on the webpage with url

```
http://www.math.umd.edu/undergraduate/courses/dcp/141/141cxnotes.pdf
```

Definition 1.1: A complex number is a number $z$ of the form $z=x+i y$ (or equivalently, $z=x+y i$ ), where $x$ and $y$ are real numbers, and where $i^{2}=-1$.

Comment: The set of all complex numbers is denoted $\mathbf{C}$ and the set of real numbers (that is, all $z$ such that $z=x$ ) is denoted $\mathbf{R}$.
Comment: Each complex number $a+i b$ can be considered as a point in the plane, with $a$ representing the $x$ coordinate and $b$ the $y$ coordinate.

Addition of complex numbers: $(a+i b)+(c+i d)=(a+c)+i(b+d)$
Multiplication of complex numbers: $(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$
Distance between $z=a+i b$ and $0:|z|=\sqrt{a^{2}+b^{2}}$. The number $|z|$ is the modulus of $z$.
Distance between $z_{1}=a+i b$ and $z_{2}=c+i d:\left|z_{1}-z_{2}\right|=\sqrt{(c-a)^{2}+(d-b)^{2}}$
Theorem 5.1 - Fundamental Theorem of Algebra: Every nonconstant polynomial with coefficients in $\mathbf{C}$ (or $\mathbf{R}$ ) has a root in $\mathbf{C}$.

Theorem 5.2 - Factorization Theorem: Suppose $p$ is a polynomial of degree $n \geq 1$ and with complex coefficients, so $p(z)=c_{n} z^{n}+c_{n-1} z^{n-1}+\cdots+c_{1} z+c_{0}$, with $c_{n} \neq 0$. Then $p$ can be factored as a product of linear terms

$$
p(z)=c_{n}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)
$$

where the numbers $z_{1}, z_{2}, \ldots, z_{n}$ are the roots of $p$. (Possibly some roots appear more than once.)

Derivative of $f$ : If the limit exists, then $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$.
Comment: Derivatives for complex polynomials and many other complex functions are obtained just like the corresponding ones for real functions. Thus if $f(z)=z^{5}$, then $\quad d f / d z=5 z^{4}$.
Infinite series: A complex infinite series has the form $\sum_{n=1}^{\infty} b_{n}$, where the terms $b_{1}, b_{2}, \ldots$ are complex numbers. The series converges to the complex number $L$ provided that the partial sums $s_{n}$ converge to $L$ in the complex plane, that is, if

$$
\lim _{n \rightarrow \infty}\left(b_{1}+b_{2}+\cdots+b_{n}\right)=\lim _{n \rightarrow \infty} s_{n}=L
$$

Power series: A complex power series has the form $\sum_{n=0}^{\infty} a_{n} z^{n}$, where the terms $a_{n}$ are complex numbers and $z$ is a (complex) variable.
Power series for exponential, sine, cosine functions:

$$
\begin{aligned}
& e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \\
& \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-+\cdots \\
& \cos z=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-+\cdots
\end{aligned}
$$

Euler's Formula: For any complex number $z, e^{i z}=\cos z+i \sin z$
Polar form of $z: z=x+i y=R \cos \theta+i R \sin \theta=R e^{i \theta}$
Products in polar form: If $z_{1}=R_{1} e^{i \theta_{1}}$ and $z_{2}=R_{2} e^{i \theta_{2}}$, then

$$
z_{1} z_{2}=R_{1} e^{i \theta_{1}} R_{2} e^{i \theta_{2}}=R_{1} R_{2} e^{i \theta_{1}} e^{i \theta_{2}}=\left(R_{1} R_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Thus for products, moduli are multiplied and angles are added.

Non-WebAssign Exercises:

1. Plot in the complex plane the following:
(a) The points $i, 2-i, 2+i,-5$
(b) The collection of points $z$ such that $|z|=1 / 2$
(c) The collection of points $z$ such that $|z-1+3 i|=2$
(d) The points $z, w$, and $z w$, where $z=3 e^{i \pi / 4}$ and $w=2 e^{4 i \pi / 3}$
2. Find all (complex) solutions of the given equation.
(a) $4 z^{2}+27=0$
(b) $z^{2}-z+1=0$
(c) $z^{2}+3 z+3=0$
3. Let $z=1-i$ and $w=\sqrt{3}-i$. Find the polar form of $z w$ and $z / w$, and plot them in the complex plane.
4. Let $f(z)=-4 z^{5}+3 z^{2}-2 z+1 / z$. Find the derivative of the function $f$.
5. Write out the first 5 terms of
(a) $\left\{i^{n}\right\}_{n=1}^{\infty}$
(b) $\left\{\left(\frac{1+i}{2}\right)^{n}\right\}_{n=1}^{\infty}$
6. Like for real power series, a complex power series $\sum_{n=0}^{\infty} c_{n} z^{n}$ either converges for all complex numbers $z$ or converges only for $z=0$, or else there is a positive (real) number $R$ such that $\sum_{n=0}^{\infty} c_{n} z^{n}$ converges for $|z|<R$ and diverges for $|z|>R$. We write $R=\infty$ if the power series converges for all $z$, and $R=0$ if the power series converges only for $z=0$. We call $R$ the radius of convergence of the power series. Find the radius of convergence $R$ for
(a) $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$
(b) $\sum_{n=0}^{\infty} z^{n}$
(c) $\sum_{n=0}^{\infty}(1+i)^{n} z^{n}$
(d) $\sum_{n=0}^{\infty} 3^{n} z^{2 n}$
