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A complex number is z = x+ iy, where x and y are real numbers, and i is
the imaginary number

√
−1. This is just another way to write a point (x, y)

of the plane. With this notation the plane is the complex plane C. Then
with z = x+ iy as above, x = <(z) is called the real part of z, and y = =(z)
is called the imaginary part of z. The x axis is the real axis (which allows us
to think of the real numbers R as a subset) and the y axis is the “imaginary
axis.” For example the real part of 3+i2 is 3 and the imaginary part 2. Often
we write yi instead of iy. There are other shortcut notations. For example,
the complex number 3 + i(−2) may be written as 3 − 2i. Also, every real
number is a complex number; for example, 7 = 7 + i(0). Furthermore, z = 0
means that the real part x = 0 and the imaginary part y = 0. However the
complex plane is much more than being just different notation for the plane.
This is because there is an addition and multiplication so we can do algebra
like the ordinary numbers:

1 Algebra

The definitions of addition and multiplication of real numbers are extended
to the complex numbers in the only reasonable way.

First, addition. Two complex numbers are added simply by adding
together their real parts and imaginary parts: we define

(a+ ib) + (c+ id) = (a+ c) + i(b+ d).

For example, (3 + 2i) + (4− 6i) = (7− 4i).

Next, multiplication. As we assume
√
−1
√
−1 = ii = −1

(2 + 3i)(4 + 5i) = 2(4 + 5i) + 3i(4 + 5i) = 8 + 10i + 12i + 15ii = −7 + 22i.

In general, the definition will be that

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)

With these definitions C enjoys all the usual arithmetical properties (e.g.
addition and multiplication are commutative and associative; the distributive
property holds; etc.).
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Also we see that every z = x+ iy 6= 0 has a multiplicative inverse

z−1 =
1

x+ iy
=

1

x+ iy

x− iy

x− iy
=

x− iy

x2 + y2
,

i.e.

z−1 =
x

x2 + y2
− i

y

x2 + y2

For example
1

2 + i
=

2

5
− i

1

5

In theory one complex equation for z can be converted into two real
equations but this is not very effective, e.g. solve

(2 + i)z = 1− i

which by sticking to complex notation has solution

z =
1− i

2 + i
= (1− i)

(
2

5
− i

1

5

)
=

2

5
− 1

5
− i

2

5
− i

1

5
=

1

5
− i

3

5

This is much easier than writing z = x + iy and converting the equation
(2 + i)(x+ iy) = 1− i into two real equations

2x − y = 1
x + 2y = −1

2 Geometry

Naturally the complex plane has a geometric side which is closely connected
to its algebra. The “complex conjugate”:

z = x+ iy = x− iy ,

gives the reflection ρ(z) = z in the real axis. One has the two fundamental
properties:

z + w = z + w, zw = z w ,

furthermore <(z) = (z + z)/2, =(z) = (z − z)/(2i).
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Exercises

1. Compute (1 + 2i)(1− 2i)

2. Check the two fundamental properties of complex conjugate

3. Determine if it is true that {
1

z

}
=

1

z

2.1 Modulus

To measure the distance between the points (0, 0), (x, y) we use Pythagorus:

|z| = |x+ iy| =
√
x2 + y2 .

This has such special properties for complex numbers we call it the modulus
or “mod” rather then distance. For obvious reasons the modulus is also
sometimes called absolute value. As |z|2 = zz we use the complex conjugates
to show

|zw| = |z| |w| .

which gives an easy proof of the Triangle inequality:

|z − w| ≤ |z|+ |w| .

For by previous

|z − w|2 = (z − w)(z − w)
= zz − zw − wz + ww
≤ |z|2 + 2|zw|+ |w|2
= |z|2 + 2|z| |w|+ |w|2
= (|z|+ |w|)2 ,

where we used the fact that

zw + wz = 2<(zw) ≤ 2|zw|
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Exercises

1. Compute ∣∣∣∣(1− i)(1 + 2i)(5 + 5i)

(1− 2i)(1 + i)(1 + i)

∣∣∣∣
2. Show that for any complex number z with |z| = 1

z =
1

z

3. Sketch all points z so that |z − (1 + i)| = 3.

2.2 Arguments

This brings us to the geometric realization of a complex number z as a vector
of length r = |z| (its modulus) making an angle θ with the OX axis. θ is
called the argument of z (or “arg”). We know that angles are real numbers
regarded as equal if they differ by integer multiples of 2π. The argument of
a nonzero complex number z is defined by considering w = z/|z| = x + iy
which is a complex number of modulus 1. Now by considering the circle
x2 + y2 = 1 we see there is a number θ, in the half open interval (−π, π]:

cos(θ) = x, sin(θ) = y.

This defines the Argument, θ = Arg(z), of z. The argument, arg(z), is the
class of θ + 2πn, where n is an integer 0,±1,±2, ....

THEOREM 1 Suppose that z, w are nonzero complex numbers with
moduli s, t, and with arguments θ, φ respectively. Then arg(zw) = θ + φ .

Now by definition z = s(cos(θ)+ i sin(θ)), w = t(cos(φ)+ i sin(φ)). Hence

zw = s(cos(θ) + i sin(θ)) t(cos(φ) + i sin(φ)) ,
= st {(cos(θ) cos(φ)− sin(θ) sin(φ)) + i(sin(θ) cos(φ) + cos(θ) sin(φ))} ,
= st(cos(θ + φ) + i sin(θ + φ)) ,

by trig identities.

As a corollary we have the very useful “de Moivre’s formula”:

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ) ,

for any integer n.
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Exercises

1. Compute arg(−1 + i)5.

2. Find complex numbers z, w so

Arg(zw) 6= Arg(z) + Arg(w) .

3. Use De Moivre to show that for n = 1, 2... cos(nθ) = Pn(cos(θ)) where
P is a polynomial of degree n.

3 Roots of Polynomials

Polynomials over the complex numbers z of degree n may be defined as

p(z) = an z
n + ...+ a1 z + a0

where the coefficients ak ∈ C and an 6= 0. Finding the roots of polynomials,
i.e. ζ so that p(ζ) = 0 has been of importance in science for hundreds of
years. We have already discussed the linear case a1z + a0 = 0 and know
that it has a single solution −a0/a1. Of course we introduced the complex
numbers to solve z2 + 1 = 0 so we’d like to know what other equations can
be solved by complex numbers. The simplest are the power equations

zn = w

for given complex w and number n. Using polar form

w = R(cos(φ) + i sin(φ))

with R, φ known and
z = r(cos(θ) + i sin(θ))

for unknown r, θ. Then d’Moivre gives

rn(cos(nθ) + i sin(nθ)) = R(cos(φ) + i sin(φ))

so hence for some integer k

rn = R, nθ = φ+ 2πk
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Therefore we find

r = R1/n, θ =
φ

n
+

2πk

n

where k = 0, 1, ...n − 1 (as other values of k just repeat). For example we
can solve

z3 = −
√

2 + i
√

2

Now | −
√

2 + i
√

2| = 2, arg(−
√

2 + i
√

2) = 3π/4 + 2πk.

So if z = r(cos(θ) + i sin(θ)) we have

r3 = 2, 3θ = 3π/4 + 2πk

so r = 21/3, θ = π/4 + 2πk/3. Therefore the three roots of −
√

2 + i
√

2 are

z0 = 21/3(cos(π/4) + i sin(π/4)) = 2−1/6(1 + i)

z1 = 21/3(cos(π/4 + 2π/3) + i sin(π/4 + 2π/3)) = 2−7/6(−(1 +
√

3) + i(−1 +
√

3))

z2 = 21/3(cos(π/4 + 4π/3) + i sin(π/4 + 4π/3)) = 2−7/6((−1 +
√

3)− i(1 +
√

3))

In particular we see that we can find two complex square roots ±
√
w for any

complex w 6= 0. Therefore by completing the square as usual we find that
any complex quadratic equation az2 + bz + c = 0 has two roots

z =
−b±

√
b2 − 4ac

2a

Back in the 16th century similar formulas were discovered for 3rd and 4th

degree polynomials. This lead to the conjecture that every nth degree poly-
nomial has n (counting multiplicity) roots. We discuss this history in the
appendix. But the short answer is the Fundamental Theorem of Algebra:

THEOREM 2 (FTA)
Every polynomial p of degree n has n roots ζk in the complex plane, i.e.

p(z) = a(z − ζ1)(z − ζ2)..(z − ζn)

Exercises

1. Find the roots of the equation z2 + 2z − i = 0.

2. Find the roots of the equation (z − 1)4 = z4.

3. Factorize z5 + 1 into linear terms.
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4 Sequences

Once we have the distance between points we can talk about limits and
convergence of sequences etc. A sequence of complex numbers can be written
zn = xn + iyn. So limn→∞ zn = w = u+ iv means limn→∞ |zn−w| = 0 which
is an ordinary real limit of calculus. Of course this is just the same as
limn→∞ xn = u, limn→∞ yn = v, i.e two real limits.

For example with fixed a+ ib ∈ C we define the sequence

zn =

(
1 +

a+ ib

n

)n
.

Let us write

1 +
a+ ib

n
= rn(cos(θn) + i sin(θn))

where

rn =

√
(1 +

a

n
)2 + (

b

n
)2 =

√
1 + 2

a

n
+
a2 + b2

n2

and

θn = tan−1

(
b

n+ a

)
Therefore if zn = Rn(cos(φn) + i sin(φn)) by de Moivre we find

Rn = (rn)n =

(
1 + 2

a

n
+
a2 + b2

n2

)n/2
→ ea

and

φn = nθn = n tan−1

(
b

n+ a

)
→ b

Therefore (
1 +

a+ ib

n

)n
→ ea (cos(b) + i sin(b))

Exercises

For which complex numbers z does the sequence ωn = zn converge?
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4.1 Series

Series are just sequences of partial sums of
∑∞

n=0 ωn. As with sequences the
whole question of convergence comes down the convergence of the real and
imaginary parts. So it is no surprise that complex series have exactly the
same criteria for convergence that series of real (nonpositive) numbers have:

A complex series
∑∞

n=0 ωn converges if

1. |ωn| < an for convergent positive series
∑∞

n=0 an “absolute convergence”

2. |ωn+1|/|ωn| ≤ r < 1, n > N “ratio test”

3. |ωn|1/n ≤ r < 1, n > N “radical test”

Just like real series, we usually do not have an explicit formula for the
limit. Again an exception is the geometric series:

∞∑
n=0

ωn ,

this time defined for fixed complex number ω = a+ ib. Following exactly the
same derivation as the real case

n∑
k=0

ωk =
1− ωn+1

1− ω

provided ω 6= 1. This converges to 1/(1−ω) if and only if |ω| < 1. Therefore

∞∑
n=0

ωn =
1

1− ω
, |ω| < 1 .

For real ω this is just the usual power series but we can have some fun by
choosing some complex values.

Exercises

1. For what values of z does the series
∑∞

n=0 nz
n converge.

2. Prove that the infinite series

1+
1

2
cos(θ)+

1

22
cos(2θ)+

1

23
cos(3θ)+.. = <

{
1

1− 1
2
(cos(θ) + i sin(θ))

}
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5 Complex Valued Functions

In calculus we have considered functions f defined on an interval [a, b] of real
numbers with real values. It is not much of a leap of the imagination to allow
f to take complex values: f(t) = x(t) + iy(t) where x(t), y(t) are ordinary
real valued functions.

For example f(t) = cos(t) + i sin(t) which we already know gives a
parametrization of the circle x2 + y2 = 1. In fact the whole theory of
parametrized curves in the plane can be written in terms of complex vari-
ables. The derivative of such a function poses no problems:

z(t) = x(t) + iy(t)⇒ dz

dt
= x′(t) + iy′(t)

so for example the function z(t) = 2 cos(t) + i sin(t) which parametrizes an
elipse with major axis 4 and minor axis 2 has derivative

z′(t) = −2 sin(t) + i cos(t)

The usual rules of derivatives hold, and you can even integrate.

Many of the uses of complex variables in science and engineering involves
complex valued functions of real variables, e.g. in electrical engineering or
quantum theory one uses complex valued functions of (real) time t. However
one also considers functions of a complex variable:

5.1 Functions of a Complex Variable

So now we are talking about functions f(z) defined on a domain D ⊂ C
taking complex values. Our polynomials p(z) are examples of such functions.
Other examples are rational functions like

f(z) =
3

z2 + 1

defined for all z 6= ±i. Complex valued functions can be added, multiplied
and divided like ordinary functions. 1

1Sometimes complex functions can be differentiated wrt z. But we do not deal with
complex derivatives in this course.
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5.2 Power series

Power Series generalize polynomials and provide a ready supply of functions.
Allowing complex coefficients an:

f(z) =
∞∑
n=0

an(z − z0)
n

First we have to deal with convergence. All the usual tests for convergence
work. Using these we find there is a radius of convergence R, i.e. the Power
Series converges absolutely inside circle |z − z0| = R and diverges for out-
side circle |z − z0| = R. The prototypical Power Series is the Geometric
Series

∑∞
n=0 z

n which we know converges for |z| < 1. Thus it has radius of
convergence R = 1. Another famous Power Series is

∞∑
n=0

zn

n!
.

Now taking the ratio of successive terms

|z|n+1

(n+ 1)!

n!

|z|n
=
|z|
n+ 1

which converges to 0 as n→∞. Thus by the ratio test the series converges
for all complex z and so the radius of convergence is R =∞.

Of course we want to do the all the usual operations to Power Series:
addition, multiplication, composition and division (not by 0 of course).

Exercises

1. By multiplying the Power Series show that

1

(1− z)2
=
∞∑
n=0

(n+ 1)zn, |z| < 1

2. What is the radius of convergence of the Power series

(a)
∞∑
n=1

(−1)n

(2n− 1)!
z2n−1 , (b)

∞∑
n=1

1

n
zn
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6 Complex Exponential

The highlight of our theory is the definition of complex exponential, using
the familar power series

exp(z) =
∞∑
n=0

zn

n!

which we know converges for all z. Using the Power Series for ex we see that
exp(x) = ex for real numbers x, i.e. exp(z) extends ex to the complex plane.
Also we see some hitherto unexpected connections with the trig functions.
For if we put z = iy

exp(iy) =
∞∑
n=0

inyn

n!

Now in takes the values i,−1,−i, 1 in turn so taking the real and imaginary
parts of the the series gives

exp(iy) =
∞∑
n=0

(−1)ny2n

(2n)!
+ i

∞∑
n=0

(−1)ny2n+1

(2n+ 1)!

You may recognize that the first Power Series is cos(y) and the second one
is sin(y).

Thus we have proved

exp(iy) = cos(y) + i sin(y)

the famous “Euler’s formula” which shows exp, cos, sin are different sides of
the same thing. In particular putting y = π we get the identity

eiπ + 1 = 0

which Euler declared “proves God exists”.

Consider the complex valued function f(t) = exp(tζ) for fixed ζ ∈ C and
real t. Now differentiating wrt t we find f ′(t) is given by

∞∑
n=0

d

dt

tnζn

n!
=
∞∑
n=1

n
tn−1ζn

n!
= ζ

∞∑
n=1

tn−1ζn−1

(n− 1)!
= ζ

∞∑
n=0

(tζ)n

n!
= ζ exp(tζ) ,
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i.e. f(t) = exp(tζ) satisfies the usual differential equation f ′(t) = ζf(t). We
use this to derive the addition formula for complex z, w:

exp(z + w) = exp(z) exp(w)

First consider the function g(t) = exp(tz) exp(ω − tz) ( for complex z, ω):

dg

dt
= z exp(tz) exp(ω − tz)− z exp(tz) exp(ω − tz) = 0

by derivative rules. Therefore g(t) is the constant g(0), i.e

g(1) = exp(z) exp(ω − z) = exp(ω)

for all z. Putting ω = z + w gives the addition formula.

The addition formula gives us an explicit formula for exp(z) for

exp(x+ iy) = exp(x) exp(iy) = ex {cos(y) + i sin(y)}

This gives De Moivre’s formula as well as all the trig identities as special
cases of the addition formula for complex exponential.

Exercises

1. Compute exp(1− iπ
4
)

2. From the addition formula for complex exp derive the trig addition
formula for sin(a+ b) and cos(a+ b)

3. Show that for all complex z, exp(z) 6= 0.

4. By defining complex

cos(z) =
∞∑
n=0

(−1)nz2n

(2n)!
, sin(z) =

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!

show that

cos(z) =
1

2
{exp(iz) + exp(−iz)} , sin(z) =

1

2i
{exp(iz)− exp(−iz)}

5. Use the previous formula to show that for all complex z

cos2(z) + sin2(z) = 1
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7 Applications to integration

Complex variables has fundamental applications throughout science. Here we
give an easier way of integrating trig expressions. In the course we considered
the problem of finding antiderivatives for expressions of the form

tneat sink(bt) cosj(ct) , where n, k, j = 0, 1, 2, 3..

This can be treated by Euler’s formula to yield

tneat
1

(2i)k
{ebit − e−bit}k 1

2j
{ecit + e−cit}j

Expanding one obtains the sum of terms of the form tneαt where α is complex.
These terms can then be integrated by parts.

In many cases the integrals have the form
∫ 2π

0
F (sin(t), cos(t))dt. It saves

a lot of time to know the formula∫ 2π

0

enitdt =

{
0 n 6= 0
2π n = 0

, for n = 0,±1,±2... .

For example consider the problem of computing
∫ 2π

0
sin8(t)dt. Now sin8(t)

may be rewritten via Euler’s formula to give

1

(2i)8
{eit−e−it}8 =

1

(2i)8
{e8it−8e6it+28e4it−56e2it+70− ..−8e−6it+e−8it} ,

by the binomial formula (also true for complex numbers). Now integrating
from 0 to 2π most of these expressions give zero, except for the power zero
term, ie the middle term. Thus the integral is∫ 2π

0

1

2(i)8
{eit − e−it}8dt =

1

28(−1)4

∫ 2π

0

70 dt =
35π

64
.

Exercises

Use complex methods to compute the integrals:∫ 2π

0

cos6(2t)dt ,

∫
sin4(3t) cos2(t)dt
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Appendix: Fundamental Theorem of Algebra

The problem of finding roots of polynomials was very much tied up with
the invention of the complex numbers themselves. Cardan (16th century)
discovered a formula for the roots of the equation z3 = 15z + 4 which gave
an answer involving

√
−121. Cardan knew that the equation had z = 4 as a

solution and was able to manipulate ‘complex numbers’ to obtain the right
answer without understanding what they were. Bombelli, in 1572, produced
rules for manipulating these “complex numbers”. Yet a ‘proof’ that the FTA
was false was given by Leibniz in 1702 when he asserted that z4 + t4 could
never be written as a product of two real quadratic factors. His mistake came
in not realising that

√
i could be written in the form a+ bi.

D’Alembert in 1746 gives a sequence converging to a zero of the polyno-
mial. His proof has the weakness that he did not have the necessary theory
to prove convergence. In fact such a theory was not developed until the late
19th century, never the less one sees his proof as being essentially correct.
Indeed in France the FTA is called D’Alembert-Gauss.

Gauss in 1799 presented his first proof and also his objections to the other
proofs. He is undoubtedly the first to spot the flaws in the earlier proofs.
Actually Gauss does not claim to give the first proper proof. He merely calls
his proof new and says of d’Alembert’s proof, that despite his objections a
rigorous proof could be constructed on the same basis. In fact Gauss’s proof
of 1799 also does not meet our present day standards.

In 1814 the Swiss accountant Jean Robert Argand published a proof based
on d’Alembert’s 1746 idea. Two years after Argand’s proof appeared Gauss
published a second proof of the FTA. This proof is complete and correct.
Then he gave a third proof. Gauss introduced in 1831 the term ‘complex
number’. In 1849 (on the 50th anniversary of his first proof!) Gauss pro-
duced the first proof that a polynomial equation of degree n with complex
coefficients has n complex roots. Despite the many proofs given by Gauss it
seems fundamentally unfair to give to him the credit for FTA. A proof using
calculus might be attributed to D’Alembert-Gauss, with important tidying
up done by Argand.
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A Proof in the style of D’Alembert-Argand

Consider a nonconstant polynomial p = a0 + a1z + ..+ anz
n , where an 6= 0.

We argue by contradiction, i.e assume p does not have a root. Thus the
function u(z) = |p(z)|2 > 0. Now as |p(z)| = |an||z|n|1 + an−1/(anz) + ..| we
have lim|z|→∞ u(z) = ∞ so, by basic calculus, the function u(z) achieves its
minimum somewhere, say at z0.

To make computations easier we make some simple transformations. So
without loss of generality we may assume z0 = 0 (otherwise just use trans-
lation z − z0). Thus |p(0)|2 = |a0|2 is the minimum of u(z). Also since
p(0) 6= 0 , p = a0 + amz

m + .. + anz
n where a0 6= 0, and am is the next

nonzero term. So without loss of generality (again) we may assume a0 = 1
(by considering p(z)/a0 instead), i.e. the minimum is now u(0) = 1. Finally
we suppose that am = ρeiφ and let β = ρ1/meiφ/m be an mth root. By making
the substitution p(z/β) we may assume p(z) = 1 + zm + ...+ anz

n.

So to obtain a contradiction we have only to show that u = |p|2 cannot
have its minimum at z0 = 0. Expanding

u(z) = |1 + zm + ...|2 = {1 + zm + ...}{1 + zm + ...}

So with z = reiθ,
u(z) = 1 + 2rm cos(mθ) + εrm,

where the error ε→ 0 as z → 0. But for θ = π/m

u(z) = 1− 2rm + εrm,

so as −2 < ε there is z → 0 so that u(z) < 1 = u(0). This means z0 = 0
cannot give the minimum. Therefore p has no roots gives a contradiction.
The only logical conclusion is that p has a root ζ.


