TI-85 and TI-86 PROGRAM: SIMPSON'S RULE \& TRAPEZOIDAL RULE (remember to press ENTER at end of each line)

KEY IN

PRGM EDIT SIMPSON
I/O Disp " $\alpha \alpha$ LOWERLIMIT"
Input α A
I/O Disp " $\alpha \alpha$ UPPERLIMIT"
Input αB
I/O Disp " $\alpha \alpha$ N(-)SUBINTERVALS"
Disp " $\alpha \alpha$ ENTER EVEN N"
Input $\alpha \mathrm{N}$
ϕ STO S
ϕ STO V
$(\alpha B-\alpha A) \div \alpha N$ STO W
1 STO J
2nd CTL For ($\alpha \mathrm{J}, 1, \alpha \mathrm{~N} / 2,1$)
$\alpha \mathrm{A}+2(\alpha \mathrm{~J}-1) * \alpha \mathrm{~W}$ STO L
$\alpha \mathrm{A}+2 \alpha \mathrm{~J} * \alpha \mathrm{~W}$ STO R
$(\alpha \mathrm{L}+\alpha \mathrm{R}) \div 2$ STO M
$\alpha \mathrm{L}$ STO x-VAR
2nd α Y1 STO L
α M STO x-VAR
2nd α Y1 STO M
α STO x-VAR
2nd α Y1 STO R
$\alpha W^{*}(\alpha \mathrm{~L}+4 \alpha \mathrm{M}+\alpha \mathrm{R}) \div 3+\alpha \mathrm{S}$ STO S
$\alpha \mathrm{W}^{*}(\alpha \mathrm{~L}+2 \alpha \mathrm{M}+\alpha \mathrm{R}) \div 2+\alpha \mathrm{V}$ STO V
2nd CTL End
I/O Disp " $\alpha \alpha$ SIMPSON(-)RULE"
Disp α S
Disp " $\alpha \alpha$ TRAP(-) RULE"
Disp α V

DISPLAY
Prgm : SIMPSON Program named "SIMPSON"
Disp "LOWERLIMIT" Lower limit of integration
Input A After ?, type in the lower limit of integration
Disp "UPPERLIMIT" Upper limit of integration
Input B After ?, type in the upper limit of integration
Disp "N SUBINTERVALS" Number of subintervals for [A, B] is N
Disp "ENTER EVEN N" The even integer N is to be entered
Input $\mathrm{N} \quad$ After ?, type in N
$\phi \rightarrow \mathrm{S} \quad 0$ is stored in location S (for Simpson's Rule)
$\phi \rightarrow \mathrm{V} \quad 0$ is stored in location V (for the Trapezoidal Rule)
$(\mathrm{B}-\mathrm{A}) / \mathrm{N} \rightarrow \mathrm{W} \quad$ Subinterval width $(\mathrm{B}-\mathrm{A}) / \mathrm{N}$ stored in location W
$1 \rightarrow \mathbf{J} \quad 1$ is stored in location J
For $(\mathrm{J}, 1, \mathrm{~N} / 2,1) \quad$ Start of loop
$A+2(J-1)^{*} W \rightarrow L \quad$ Left endpoint of $[A+2(j-1) W, A+2 j W]$ stored in L
$A+2 J * W \rightarrow R \quad$ Right endpoint of $[A+2(j-1) W, A+2 j W]$ stored in R
$(\mathrm{L}+\mathrm{R}) / 2 \rightarrow \mathrm{M} \quad$ Midpoint of $[\mathrm{A}+2(\mathrm{j}-1) \mathrm{W}, \mathrm{A}+2 \mathrm{jW}]$ stored in M
$\mathrm{L} \rightarrow \mathrm{x} \quad \mathrm{L}$ is stored in location x
$\mathrm{y} 1 \rightarrow \mathrm{~L} \quad \mathrm{y} 1(\mathrm{~L})$ is stored in location L
$\mathrm{M} \rightarrow \mathrm{x} \quad \mathrm{M}$ is stored in location x
$\mathrm{y} 1 \rightarrow \mathrm{M} \quad \mathrm{y} 1(\mathrm{M})$ is stored in location M
$R \rightarrow x \quad R$ is stored in location x
$\mathrm{y} 1 \rightarrow \mathrm{R} \quad \mathrm{y} 1(\mathrm{R})$ is stored in location R

To execute the program in order to evaluate $\int_{a}^{b} f(x) d x$, do the following: 2nd QUIT (to quit the program)
Then GRAPH, F1 and key in your function $f(x)$ into $y 1$ Then ENTER 2nd QUIT PRGM NAMES (choose the program) ENTER

The display reads LOWERLIMIT, ? Key in A ENTER (gives the lower limit of integration)
The display reads UPPERLIMIT, ? Key in B ENTER
The display reads ... ENTER N, ? Key in N ENTER (gives the upper limit of integration) (number of subintervals of $[\mathrm{A}, \mathrm{B}]$)

The display then exhibits the Simpson Rule and Trapezoidal Rule approximations for the value of the integral. Note that with this program, the number of subintervals for each rule is even.
To execute the program again, just key in ENTER
ϕ represents zero (distinguished from the letter 0) You can access " by I/O MORE MORE "
If you type $\alpha(-)$ then you get a "space" (between two words) - here (-) is the "negative" key

