To begin: ON APPS 7 (for Program Editor 3 (for New) NOTE: Press ENTER at the end of each line! Type needs to be Program Variable needs to be the title of the program, say Simpson Then start typing after the Prgm line and before the EndPrgm line.

Disp 2nd "2nd α lower limit"	Disp "lower limit"	Lower limit of integration
Input $\alpha \mathrm{a}$	Input a	After ?, type in the lower limit of integration
Disp 2nd "2nd α upper limit"	Disp "upper limit"	Upper limit of integration
Input α b	Input b	After ?, type in the upper limit of integration
Disp 2nd "2nd α n subintervals"	Disp "n subintervals"	Number of subintervals for [a,b] is n
Disp 2nd "2nd α enter even n"	Disp "enter even n"	The even integer n is to be entered.
Input α n	Input n	After ?, type in n
$0 \mathrm{STO} \alpha \mathrm{s}$	$0 \rightarrow \mathrm{~s}$	The number 0 is stored in location s (for Simpson)
0 STO αv	$0 \rightarrow \mathrm{v}$	The number 0 is stored in location v (for Trapezoidal)
$(\alpha b-\alpha a) \div \alpha$ STO αw	$(\mathrm{b}-\mathrm{a}) / \mathrm{n} \rightarrow \mathrm{w}$	Subinterval width ($\mathrm{b}-\mathrm{a}$)/n is stored in location w
For $\alpha \mathrm{j}, 1, \alpha \mathrm{n} / 2$	For $\mathrm{j}, 1, \mathrm{n} / 2$	Start of loop, where j step increases from 1 to $\mathrm{n} / 2$
$\alpha \mathrm{a}+2(\alpha \mathrm{j}-1)^{*} \alpha \mathrm{w}$ STO $\alpha \mathrm{p}$	$\mathrm{a}+2(\mathrm{j}-1)^{*} \mathrm{w} \rightarrow \mathrm{p}$	Left endpoint of jth subinterval stored in location p
$\alpha \mathrm{a}+2 \alpha{ }^{\text {j }}$ * $\mathrm{w}^{\text {STO }}$ - r	$\mathrm{a}+2 \mathrm{j} * \mathrm{w} \rightarrow \mathrm{r}$	Right endpoint of jth subinterval stored in location r
$(\alpha \mathrm{p}+\alpha \mathrm{r}) \div 2$ STO $\alpha \mathrm{m}$	$(\mathrm{p}+\mathrm{r}) / 2 \rightarrow \mathrm{~m}$	Midpoint of jth subinterval stored in location m
$y 1(\alpha p) S T O \alpha p$	$y 1(p) \rightarrow p$	$\mathrm{y} 1(\mathrm{p})$ is stored in location p
y1 (αr) STO α r	$\mathrm{y} 1(\mathrm{r}) \rightarrow \mathrm{r}$	$\mathrm{y} 1(\mathrm{r})$ is stored in location r
$\mathrm{y} 1(\alpha \mathrm{~m})$ STO $\alpha \mathrm{m}$	$\mathrm{y} 1(\mathrm{~m}) \rightarrow \mathrm{m}$	$\mathrm{y} 1(\mathrm{~m})$ is stored in location m
$\alpha s+\alpha w^{*}(\alpha p+4 \alpha m+\alpha r) \div 3$ STO $\alpha \mathrm{s}$	$\mathrm{s}+\mathrm{w}^{*}(\mathrm{p}+4 \mathrm{~m}+\mathrm{r}) / 3 \rightarrow \mathrm{~s}$	Jth stage sum for Simpson's Rule is stored in s
$\alpha \mathrm{v}+\alpha \mathrm{w}^{*}(\alpha \mathrm{p}+2 \alpha \mathrm{~m}+\alpha \mathrm{r}) \div 2 \mathrm{STO} \alpha_{\mathrm{v}}$		$\mathrm{v}+\mathrm{w}^{*}(\mathrm{p}+2 \mathrm{~m}+\mathrm{r}) / 2 \rightarrow \mathrm{v}$ Jth stage sum for
Trapezoidal Rule is stored in		EndFor End of loop
Disp 2nd "2nd α simpson rule"	Disp "simpson rule"	Prepares for the Simpson Rule approximation
Disp α s	Disp s	Displays Simpson's Rule approximation
Disp 2nd "2nd α trapezoidal rule"	Disp "trapezoidal rule"	Prepares for the Trapezoidal Rule approximation
Disp v	Disp v	Displays the Trapezoidal Rule approximation
	EndPrgm	End of the program

To execute the program in order to evaluate $\int_{0}^{2} x^{2} d x$, do the following: 2 nd QUIT (to quit the program) Then key in your function $\mathrm{f}(\mathrm{x}$) into y 1 (from $\mathrm{y}=$ above F 1 key) Then ENTER 2nd QUIT On the main line, type: $\alpha \alpha$ simpson() ENTER

The display reads "lower limit ?" Key in a ENTER (gives the lower limit of integration)

The display reads "upper limit ?" Key in b ENTER (gives the upper limit of integration) The display reads "enter even n ?" Key in n ENTER (gives the number of subintervals)

Then the display reads:
"simpson rule" and the approximation appears below.
"trapezoidal rule" and the approximation appears below.

