
THE CENTRAL LIMIT THEOREM

Throughout the discussion below , let X1, X2, . . . be i.i.d. rv’s, each with finite
expected value µ and finite nonzero standard deviation σ. Given n, define Xn to
be the average (X1 + · · ·+Xn)/n, and define Sn to be the sum X1 + · · ·+Xn. Then

E(Sn) = nµ

V (Sn) = nσ2

st.dev.(Sn) = σ
√

n.

(The equation for the variance of Sn holds because the Xi are independent, so the
variance of the sum of the Xi is the sum of the variances.) Now, Xn = (1/n)Sn, so

E(Xn) = µ = (1/n) E(Sn)

V (Xn) =
σ2

n
= (1/n)2 V (Sn)

st.dev.(Xn) =
σ√
n

= (1/n) st.dev.(Sn)

REMARKS
1. We can think of the i.i.d. condition as meaning that the Xi are repeated exper-
iments, or alternately random samples, from some given probability distribution.

2. The expected value of the sample average is the same as the expected value of
each Xi. This is common sense. We can think of Xn as an estimate of the true
population average µ.

3. As n gets bigger, the spread (standard deviation) of Xn gets smaller. This is
common sense: a bigger sample should give a more reliable estimate of the true
population average.

4. N (µ, σ) denotes the normal distribution with mean µ and standard deviation σ.

THEOREM (Central Limit Theorem) Suppose that X1, X2, . . . is a sequence of
i.i.d. rv’s, each with finite expected value µ and finite nonzero standard deviation
σ. Let Zn be the standardized version of Xn, i.e.

Zn =
Xn − µ

(σ/
√

n)
.

Then as n →∞, Zn −→ N (0, 1).
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REMARKS

1. Note the CLT has an extra assumption (finite variance) which the LLN does not
have. The CLT gives more information when it is applicable.

2. The CLT is an incredible law of nature. Under modest assumptions, the process
of independent repetition has a universal effect on the averaging process, depending
only on the mean and standard deviation of the underlying population.

3. The expression “Zn −→ N (0, 1)” abbreviates “Zn converges in distribution to
N (0, 1) as n →∞”. Informally, this means that if n is large enough, then we have
(for all numbers a < b)

Prob
(
a <

(Xn − µ)
(σ/

√
n)

< b
)
≈ Prob (a < Z < b)

where ≈ means “approximately equals”, and as n goes to infinity, the approxi-
mation gets as good as we want. If we want to be completely precise, we express
this by saying that for every ε > 0, there exists N such that whenever n ≥ N and
a < b, we have ∣∣∣Prob(a < Zn < b)− |Φ(b)− Φ(a)|

∣∣∣ < ε

where Φ is the cumulative distribution function for N (0, 1) (which is given approx-
imately by the tables in the back of our textbook).

4. There are other ways to express the approximation above:

Prob
(

a(σ/
√

n) < (Xn − µ) < b(σ/
√

n)
)
≈ Prob

(
a < Z < b

)
, or

Prob
(

µ + a(σ/
√

n) < Xn < µ + b(σ/
√

n)
)
≈ Prob

(
a < Z < b

)
where Z is any r.v. which has the standard normal distribution N (0, 1). We could
also use the notation Xn −→ N (µ, σ/

√
n) to describe this situation.

RULE OF THUMB

How large should n be for the CLT approximation to be good enough? Really, that
depends on the particular r.v. X and on how good “good enough” has to be. One
rule of thumb (the rule used, for example, in the Devore text) is that, unless we
have explicit information to the contrary, n > 30 is large enough for “good enough”.

2



EXAMPLE

Let us go through the approximations above in an example, with a = −2 and b = 2.
We will take the r.v.’s Xi corresponding to flipping a fair coin.
So, each Xi equals 0 with probability 1/2, and equals 1 with probability 1/2.
For each Xi, µ = .5 and σ =

√
(.5)(1− .5) = .5. Let n = 10, 000.

Then the standard deviation for Xn is (σ/
√

n) = (.5)/
√

10, 000 = .005 .
Here are the approximations above with these numbers put in.

Prob
(
−2 <

(Xn − .5)
.005

< 2
)
≈ Prob (−2 < Z < 2)

Prob
(
−2(.005) < (Xn − .5) < 2(.005)

)
≈ Prob

(
−2 < Z < 2

)
Prob

(
.5− 2(.005) < Xn < .5 + 2(.005)

)
≈ Prob

(
−2 < Z < 2

)
.

If we compute out the last line, we get

Prob
(

.49 < Xn < .51
)
≈ Prob

(
−2 < Z < 2

)
= Prob(Z ≤ 2)− Prob(Z ≤ −2)
= .9772− .0228 = .9544.

This means: if the experiment is to flip a fair coin 10,000 times:
then in about 95% of those experiments,
the percentage of the flips which equal heads will be between 49% and 51%.

SUMS AND THE CLT

Let us look again at one of the ways to express the CLT:

Prob
(

a
σ√
n

< (Xn − µ) < b
σ√
n

)
≈ Prob

(
a < Z < b

)
.

Remember, Xn = (X1 + · · ·+Xn)/n. If we multiply each element of the inequality
on the left by n, we don’t change the truth of the inequality, so we don’t change its
probability. So we get

Prob
(
aσ
√

n < (X1 + · · ·+ Xn)− nµ < bσ
√

n
)
≈ Prob

(
a < Z < b

)
.

So, we can also use a normal approximation for the probability that sums lie in some
range. (For the special case of coin flipping, we already did this with the normal
approximation to the binomial distribution. In fact, the description above explains
how the normal approximation to the binomial distribution can be deduced as a
consequence of the Central Limit Theorem.)
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LAW OF LARGE NUMBERS

Let us see that the LLN is a consequence of the CLT, in the case that the CLT
applies.

Suppose ε > 0, and we have i.i.d. rv’s as in the Central Limit Theorem. Then

Prob

(
−ε < Xn − µ < ε

)

= Prob

((−ε
√

n

σ

)
<

Xn − µ

(σ/
√

n)
<
(ε
√

n

σ

))

≈ Prob
(−ε

√
n

σ
< Z <

ε
√

n

σ

)

where Z is any random variable with the standard normal distribution. Therefore
for any given ε > 0, no matter how small,

lim
n→∞

Prob
(
−ε < Xn − µ < ε

)
= 1 .

This last statement is one way to state the Law of Large Numbers.
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