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1. INTRODUCTION

The goal of this paper is to develop the ideas of hypercohomology, hyper-derived functors, and
acyclicity and demonstrate how these ideas can be used to connect various cohomology theories.
To illustrate the power of this framework, we will apply this theory in the setting of sheaves over
manifolds and use it to recover some classical theorems regarding comparisons of various coho-
mology theories. We will use homological techniques and fundamental geometry results to prove:

Theorem 1.1 (De Rham’s Theorem). Let X be a smooth manifold. There is an isomorphism

Hk
dR(X) ∼= Hk

sing(X,R).

Theorem 1.2 (Dolbeault’s Theorem). Let X be a complex manifold. There is an isomorphism

Hp,q

∂
(X) ∼= Hq

sh(X,Ωp
an)

where Ωp
an is the complex of sheaves of holomorphic forms.

Theorem 1.3 (Analytic de Rham Theorem). Let X be a complex manifold. There is an isomor-
phism

Hk
sing(X,C) ∼= Hk(X,Ω•an)

where Ω•an is the complex of sheaves holomorphic forms.
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Theorem 1.4 (Algebraic de Rham Theorem). Let X be a smooth complex projective variety with
Zariski topology and Xan the underlying set of X with the complex manifold topology. There is an
isomorphism

Hk
sing(Xan,C) ∼= Hk(X,Ω•alg)

where Ω•alg is the complex of sheaves of algebraic differential forms.

We loosely follow the presentation of [3] but develop the material in a slightly more general
language.

2. BACKGROUND

2.1. Hyper-derived functors. We recall some standard facts. Fix a left exact additive functor
F : A → B between abelian categories. Assume that A has enough injectives.

Definition 2.1. The right hyper-derived functors of F are functors RiF : Ch(A)→ B.

For the purposes of this paper, the construction of the hyper-derived functors is superfluous so
we omit it. The interested reader can consult [2]. The main fact about hyper-derived functors that
we rely on is the following.

Fact 2.2 ( [2, p. 150]). Let A• be a chain complex. There are two spectral sequences associated
with the right hyper-derived functors of F :

IIEpq
2 = (RpF )(Hq(A•))⇒ Rp+qF (A•) (weakly convergent)(2.3)

IEpq
2 = Hp(RqF (A•))⇒ Rp+qF (A•) (if A• is bounded below)(2.4)

This gives that R•F vanishes on exact complexes and sends quasi-isomorphisms to isomorphisms.

2.2. Acyclicity. In the primary part of this paper, we will want to compute cohomology using
objects that are not necessarily injective. Those objects will have nice properties that allow us to
compute cohomology regardless. In this section, we make this notion precise.

Definition 2.5 (F -acyclicity). Fix F : A → B a left exact additive functor between abelian cate-
gories. An object A ∈ A is called F -acyclic if RiF (A) = 0 for all i > 0.

Definition 2.6. A resolution 0→ A→ B• is called F -acyclic if Bi is F -acyclic for all i ≥ 0.

We will show that acyclic resolutions can be used to compute cohomology. Towards that end,
we need a few lemmas.

Lemma 2.7. If A• is a complex of F -acyclic objects bounded below, then RnF (A) = Hn(F (A•)).

Proof. The acyclicity assumptions on A• yield RqF (A•) = 0 for q > 0 and R0F (A•) = F (A•).
Hence the spectral sequence (2.4) collapses at the E2 page, so

RnF (A) = Hn(R0F (A•)) = Hn(F (A•)).

�

Lemma 2.8. For any A ∈ A, we have RnF (A[0]) = RnF (A).

Proof. Since A[0] is concentrated in degree zero, then Hq(A[0]) = 0 for q 6= 0 and H0(A[0]) = A.
Thus the spectral sequence (2.3) collapses at the E2 page so

RnF (A[0]) = (RnF )(H0(A[0])) = RnF (A).

�
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Lemma 2.9. Let 0 → A
d→ B• be a resolution. The natural map A[0] → B• of chain complexes

is a quasi-isomorphism.

Proof. The natural map A[0]→ B• is depicted below.

0 A 0 0 · · ·

0 B0 B1 B2 · · ·

d

Since 0 → A → B• is exact, then H i(B•) = 0 = 0∗H
i(A[0]) and d∗H

0(A[0]) = d(A) =
ker(B0 → B1) = H0(B•), so A[0]→ B• is a quasi-isomorphism. �

With these lemmas collected, we can put them together to get the following theorem that tells
us how we can use acyclic resolutions to compute cohomology.

Theorem 2.10. Let 0→ A→ B• be an F -acyclic resolution. There is an isomorphism

RnF (A) ∼= Hn(F (B•)).

Proof. Applying lemma 2.9 together with the fact that hyperderived functors take quasi-isomorphisms
to isomorphisms yields RnF (A[0]) ∼= RnF (B•). Then lemmas 2.7 and 2.8 give

RnF (A) = RnF (A[0]) ∼= RnF (B•) = Hn(F (B•)).

�

2.3. Sheaf Cohomology. Let us contextualize the preliminaries we have developed so far. Our
aim is to investigate classical cohomology theories on geometric spaces using the language of
homological algebra. To do this, we need an appropiate abelian category in which to conduct our
investigation. The category that we will use is that of abelian sheaves over X , denoted Sh(X).
This category has enough injectives so will allows us to do cohomology. There is a natural functor
on Sh(X) which we recall below.

Definition 2.11. The global sections functor Γ: Sh(X) → Ab is the functor that takes F to its
global sections Γ(X,F) and takes maps of sheaves to the induced map on global sections. It is
additive and left exact.

Convention 2.12. Throughout the rest of the paper, we will have X be some type of topological
space. We will always be considering the global sections functor Γ: Sh(X) → Ab, so we will
suppress mention of Γ (i.e. we will use acyclic to mean Γ-acyclic etc.).

In the following example, we see how our current setup provides a good setting in which to
interpret classical cohomology theories.

Example 2.13. Let X be a smooth manifold. Classical de Rham cohomology, denoted Hk
dR(X), is

the cohomology of the chain complex of abelian groups

0→ A0(X)→ A1(X)→ A2(X)→ · · ·
where Ak(X) denotes the smooth k-forms on X and the differentials are the exterior derivative
maps. The smooth k-forms form a sheaf Ak on X , namely the sheaf that associates to an open set
U the smooth k-forms defined on U . These sheaves fit neatly into a chain complex A• of abelian
sheaves on X

0→ A0 → A1 → A2 → · · ·
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where the differentials are the exterior derivatives on the level of open sets. Importantly, we can
recover the classical de Rham complex by applying the global section functor and even recover the
de Rham cohomology as Hk

dR(X) = Hn(Γ(A•)).

The last remark in the example hints at the result of Theorem 2.10 and indeed this is foreshad-
owing for later, but first we need to discuss sheaf cohomology.

Definition 2.14 (Sheaf cohomology). Fix X a topological space and F an abelian sheaf over X .
We define the sheaf cohomology of X with coefficients in F , denoted Hn

sh(X,F), to be the abelian
group RnΓ(F), the image of F under the right derived functor of Γ. Similary, for a complex F•
of abelian sheaves over X , we define the sheaf hypercohomology Hn(X,F•) to be RnΓ(F•).

Our notation and terminology for sheaf cohomology is suggestive of a correspondence between
sheaf cohomology and singular cohomology. Indeed, this occurs when X is nice (for example, if
X is a manifold). To make sense of such a correspondence, we need some sheaf analogue of a
group of coefficients that will correspond to singular cohomology. This prompts the following.

Definition 2.15 (Constant sheaf). Let A be an abelian group. The constant sheaf A on X is the
sheaf of continuous functions X → A where A is equipped with the discrete topology. Note this
is equivalent to locally constant functions on X with values in A.

We now make the correspondence precise:

Fact 2.16 ( [3, Remark 2.2.16]). If X is a manifold and A is a constant sheaf on X , then there is
an isomorphism

Hk
sh(X,A) ∼= Hk

sing(X,A).

2.4. Acyclic Sheaves and a Caveat. We have now established the bulk of the homological algebra
we will need to prove our desired results. However, we have not discussed any methods to show
certain sheaves are actually acyclic, which we will inevitably need if we are to have any chance
of using the machinery developed so far. There is a particular class of sheaves that arises in the
scenarios we consider, called fine sheaves, which are acyclic when the base space is a manifold.
These sheaves are roughly those that support partitions of unity. We will not explore this notion in
any depth beyond using the fact that the sheaves we will consider are fine, as that would distract
from the purpose of the paper. We will however remark when we use these assumptions so that the
rigorous reader may investigate the idea on their own time.

3. COHOMOLOGY COMPARISON THEOREMS

3.1. De Rham’s Theorem. Let X be a smooth manifold andA• the sheaf complex of differential
forms as described in Example 2.13. As a manifold supports smooth partitions of unity, then A•
is a complex of fine, and thus acyclic, sheaves. We focus for now on the degree zero part of the
complex which is 0 → A0 → A1. Note that on an open set U , the sections of A0 are the smooth
functions on U . Thus the kernel of derivative map on U are exactly the locally constant functions
on U with values in R, so we can identify ker(A0 → A1) with the constant sheaf R. Also recall the
Poincaré lemma which states that every closed k-forms is exact on open balls of Rn for 1 ≤ k ≤ n.
This then implies that A1 → A2 → · · · is exact. Hence, we have the exact sequence

0→ R→ A0 → A1 → A2 → · · ·
Thus A• is an acyclic resolution of R. Applying theorem 2.10, fact 2.16, and the last remark of
example 2.13 gives an isomorphism

Hk
sing(X,R) ∼= Hk

sh(X,R) ∼= Hk(Γ(A•)) = Hk
dR(X).
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We have thus proven de Rham’s theorem.

3.2. Dolbeault Theorem. Let X be a complex manifold. We recall the basic notions of Dolbeault
cohomology. Let A1,0 denote the sheaf of one-forms that contain only dz locally and A0,1 denote
the one-forms that contain only dz̄ locally. The sheaf of (p, q)-forms on X is the sheaf

∧p
1A1,0 ∧∧q

1A0,1. The Dolbeault operator is a map ∂ : Ap,q → Ap,q+1 which makes the following a complex

0→ Ap,0 → Ap,1 → Ap,2 → · · ·
We denote this complex by Ap,•. We also remark that each of these sheaves is fine, since they
support partitions of unity, so are acyclic. The Dolbeault cohomology groups Hp,q(X) are the
cohomology groups of the complex Hq(Γ(Ap,•)). We denote the sheaf of holomorphic p-forms on
X by Ωp

an. To obtain our desired comparison result, we need a complex analogue of the Poincaré
lemma. This manifests as the ∂-Poincaré lemma [1, p. 25], which gives the exactness of

0→ Ωp
an → Ap,0 → Ap,1 → Ap,2 → · · ·

Thus Ap,• is an acyclic resolution of Ωp
an. Applying theorem 2.10, we obtain an isomorphism

Hq
sh(X,Ωp

an) ∼= Hq(Γ(Ap,•)) = Hp,q

∂
(X).

We thus have Dolbeault’s theorem.

3.3. Analytic de Rham Thoerem. Let X be a complex manifold and let Ωk
an be the sheaf of

holomorphic k-forms on X . The sheaves assemble into a complex

0→ Ω0
an → Ω1

an → Ω2
an → · · ·

where the differentials are the maps d = ∂ + ∂. We denote this complex by Ω•an. The suitable
analogue of the Poincaré lemma in this case is the holomorphic Poincaré lemma [3, Theorem
2.5.1] which tells us that the sequence

0→ C→ Ω0
an → Ω1

an → · · ·
is exact.

Remark 3.1. A neat application of spectral sequences can be used to prove the holomorphic
Poincaré lemma by using a double complex in combination with the smooth and ∂ Poincaré lem-
mas (this is the method of proof taken in the cited source).

In contrast to the previous two cases, we cannot now apply theorem 2.10 since the sheaves Ωk
an

are not fine as they do not admit partitions of unity. We thus apply lemma 2.9 together with fact
2.2 to get an isomorphism

Hk
sing(X,C) ∼= Hk

sh(X,C) ∼= Hk(X,Ω•an).

This is the Analytic de Rham Theorem.

3.4. Algebraic de Rham Theorem. Our final goal is the algebraic de Rham theorem which relates
a purely algebraic cohomology theory to a topological one. Let X be a smooth complex projective
variety with Zariski topology and Xan the underlying set of X with the complex manifold topology.
Denote the complex of algebraic k-forms on X by Ω•alg. As we are working in the algebraic
category, there is not much hope for a Poincaré lemma similar to that which has arisen in each of
our arguments so far. We are thus forced to seek another approach. Our saving grace is Serre’s
GAGA principle, which establishes an equivalence between the category of sheaves over X and
the category of sheaves over Xan via the analytification functor (−)an. Moreover, we have the
following.
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Fact 3.2 ( [3, p. 91]). For all k, there are isomorphisms

Hk(X,F) ∼= Hk(Xan,Fan).

Additionally, we have
(Ωp

alg)an
∼= Ωp

an.

Hence
Hp(X,Ωq

alg)
∼= Hp(Xan,Ω

q
an).

We consider the two spectral sequences converging to Hk(Xan,Ω
•
an) and Hk(X,Ω•alg) coming

from fact 2.2. We are list them below.

(Epq
2 )an = Hp(X,Hq(Ω•an))⇒ Hp+q(Xan,Ω

•
an)(3.3)

(Epq
2 )alg = Hp(X,Hq(Ω•alg))⇒ Hp+q(X,Ω•alg)(3.4)

Fact 3.2 gives an isomorphism of the E2 pages of these two spectral sequences which ascends to
an isomorphism at the E∞ level by the mapping lemma for E∞. This then implies that

Hk(Xan,Ω
•
an) ∼= Hk(X,Ω•alg).

Combining this with the Analytic de Rham Theorem, we secure an isomorphism

Hk
sing(Xan,C) ∼= Hk(X,Ω•alg).

Whence we have proven the Algebraic de Rham Theorem.
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