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Abstract

This is a short note proving a Lefschetz principle type result on the intersection locus of G-invariant
hypersurfaces. The author thanks Sam Lidz for helpful discussions and suggestions.

Let G an algebraic group over Z act on PnZ. We prove the following result.

Theorem 1 (Invariance under reduction). Fix generic G-invariant hypersurfaces f1, . . . , fn ∈ Z[x0, . . . , xn].
There is an integer N such that for any prime p not dividing N , the intersection locus over C and the
intersection locus over Fp are isomorphic as G-sets.

Proof. Let X = Proj(Z[x0, . . . , xn]/(f1, . . . , fn)); this is a closed subscheme of PnZ. Note that for any field
k, we have X(k) in canonical bijection with Vk(f1, . . . , fn) := V (f̄1, . . . , f̄n) ⊆ Pnk , where f̄i = fi ⊗ 1 ∈
Z[x0, . . . , xn] ⊗Z k. This bijection is G-equivariant. Let K be the field generated by the coordinates of the
points [p0 : · · · : pn] ∈ VQ(f1, . . . , fn) with some pi = 1. Note that K is a number field, so we can consider
the ring of integers OK .

We next show that there is N ∈ OK such that

XOK [1/N ] = Proj(OK [1/N ][x0, . . . , xn]/(f1, . . . , fn)) ∼=
∐

P∈VC(f1,...,fn)

(SpecOK [1/N ])P ,

where G acts by mapping (SpecOK [1/N ])P isomorphically onto (SpecOK [1/N ])g.P .

Since all solutions are defined over K, then XK is a disjoint union of points. Let D(xi) be the standard
affine patch of Pn corresponding to xi 6= 0. Set xj/i := xj/xi and fk/i := fk(x1/i, . . . , xn/i). Then

Ui := XK ∩D(xi)K ∼= Spec(K[x0/i, . . . , xn/i]/(f1/i, . . . , fn/i)).

The points P = [aP0 : · · · : aPn ] on this affine patch Ui(K) are thus given by the maximal ideals mP =
(xj/i − aPj/i : j 6= i). These ideals satisfy

(f1/i, . . . , fn/i) =
∏

P∈Ui(K)

mP .

For α : Ui(K) → [n] − {i}, write xα − aα for
∏
P∈Ui(K)(xα(P )/i − aPα(P )/i), so all the xα − aα generate the

ideal
∏
P∈Ui(K) mP . Thus we have

fj/i =
∑
α

cαji(xα − aα) (1)

and
xα − aα =

∑
j

dαjifj/i (2)
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where the cαji and dαji are polynomials over K. Now let N ∈ OK be the product (ranging over all i, j, α)

of all the denominators appearing in the coefficients of any cαji or dαji as well as the denominators of the aPj/i
and all differences aPj/i − a

Q
j/i ranging over P,Q ∈ Ui(K).

We now describe XOK [1/N ] over affine patches. Fix an affine patch Ui = XOK [1/N ]∩D(xi)OK [1/N ]. Then
the cooordinate ring of Ui is

Γi := OK [1/N ][x0/i, . . . , xn/i]/(f1/i, . . . , fn/i).

Note that (x0/i, . . . , xn/i) is a prime ideal of OK [1/N ][x0/i, . . . , xn/i], as the quotient is OK [1/N ]. Thus so is
pP = (x0/i − aPj/i, . . . , xn/i − a

P
j/i) for all P ∈ Ui(K). Notice that pP and pQ are comaximal for all distinct

P,Q ∈ Ui(K), since there is some index j so that aPj/i − a
Q
j/i = (xj/i − aQj/i) − (xj/i − aPj/i) ∈ pP + pQ is

nonzero, and thus invertible, as otherwise P and Q would be the same point in Ui(K). Moreover, by (1) and
(2), we have

(f1/i, . . . , fn/i) =
∏

P∈Ui(K)

pP .

By the Chinese remainder theorem

Γi ∼=
∏

P∈Ui(K)

OK [1/N ][x0/i, . . . , xn/i]/pP ∼=
∏

P∈Ui(K)

OK [1/N ].

It follows that
Ui ∼= Spec Γi ∼=

∐
P∈Ui(K)

(SpecOK [1/N ])P .

To get XOK [1/N ], we glue all the affine parts Ui along their intersections Uij . Note Uij = Spec Γi[x
−1
j/i]

and Uji = Spec Γj [x
−1
i/j ]. In Γi[x

−1
j/i], we have that (pP )xi/j

= (1) if and only if xj/i ∈ pP if and only if

aPj/i = 0. Thus

Γi[x
−1
j/i] =

∏
{P∈Ui(K):aP

j/i
6=0}

SpecOK [1/N ]

and
Γj [x

−1
i/j ] =

∏
{P∈Uj(K):aP

i/j
6=0}

SpecOK [1/N ].

The isomorphism Uij → Uji is induced by the map Γi[x
−1
j/i] → Γj [x

−1
i/j ] given by xk/i 7→ xk/j for k 6= j and

xj/i 7→ x−1i/j . This sends

(x0/i − aP0/i, . . . , xj/i − a
P
j/i, . . . xn/i − a

P
n/i) 7→ (x0/j − aP0/j , . . . , x

−1
i/j − a

P
j/i, . . . xn/j − a

P
n/j)

= (x0/j − aP0/j , . . . , xi/j − a
P
i/j , . . . xn/j − a

P
n/j).

Thus the glueing identifies the (SpecOK [1/N ])P in Ui with (SpecOK [1/N ])P in Uj . This glueing is canoni-
cally associated to how the points of (Ui)K and (Uj)K are glued to get XK , so we have that

XOK [1/N ]
∼=

∐
P∈XK(K)

(SpecOK [1/N ])P =
∐

P∈VC(f1,...,fn)

(SpecOK [1/N ])P .

Now we consider the G-action on XOK [1/N ]. Since it is affine, then multiplication by g is induced by a
map of OK [1/N ]-algebras g :

∏
P∈VC(f1,...,fn)

OK [1/N ]→
∏
P∈VC(f1,...,fn)

OK [1/N ]. The map must send 1 to
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1, and thus permutes the copies of SpecOK [1/N ]. Observe that the action by g on the C-points is given by
base changing the map g. Thus the way in which g permutes the copy (SpecOK [1/N ])P is the same as how
g permutes the actual point P in VC(f1, . . . , fn). More succinctly, the G-action on XOK [1/N ] acts by mapping
(SpecOK [1/N ])P isomorphically onto (SpecOK [1/N ])g.P .

Now let p ∈ OK be any nonzero prime which does not divide N and lies over p. Then p is maximal
in OK [1/N ], so the quotient F = OK [1/N ]/p is a finite field of characteristic p. Then base changing
XOK [1/N ] to F identifies the copy of (SpecOK [1/n])P with an F -point which further corresponds to a solution

P ∈ VF (f1, . . . , fn). In fact, every solution in VF (f1, . . . , fn) comes from the base change of an OK [1/N ]-
point of XOK [1/N ] as there are d OK [1/N ]-points which give rise to d different F -points, and |XF (F )| =

|VF (f1, . . . , fn)| ≤ d by Bezout’s theorem for Fp. Identifying C-points P with the corresponding point
P , the action of g on VF (f1, . . . , fn) is g.P = g.P , since the action comes from base changing the action
over OK [1/N ], which further corresponds to the aciton on VC(f1, . . . , fn). Thus, as G-sets, we have the
isomorphism

VFp
(f1, . . . , fn) = VF (f1, . . . , fn) ∼= VC(f1, . . . , fn).

We conclude the theorem.
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