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1. PRELIMINARIES

We first recall some basic notions.

Definition 1.1. A (pure) Hodge structure of weight n, denoted (HZ, H
p,q), consists of a free Z-

module HZ along with a decomposition HC =
⊕

p+q=nH
p,q where HC := HZ ⊗Z C and Hp,q =

Hq,p. The vector of Hodge numbers h = (hp,q) = (dimHp,q) is the type of the Hodge structure.

Using the decomposition Hp,q of a Hodge structure, we obtain a finite decreasing filtration F of
HC by taking F p :=

⊕
i≥pH

i,n−i. This prompts the following (equivalent) definition.

Definition 1.2. A (pure) Hodge structure of weight n, denoted (HZ, F ), consists of a free Z-module
HZ along with a finite decreasing filtration F on HC so that H = F p ⊕ F n−p+1.

From a Hodge structure with filtration F on HC, we obtain a decomposition Hp,q = F p ∩ F q. The
decomposition data and filtration data are thus equivalent.

Example 1.3. Throughout these notes we will use elliptic curves as a testing ground for the new
ideas we develop. As such, let E be an elliptic curve. There is a natural Hodge structure H of
weight 1 and type (1, 1) on the first cohomology H1(E,Z) arising from Hodge decomoposition.
Concretely, we take HZ := H1(E,Z) ∼= Z2 and the decomposition is

HC = H1(E,C) = H1,0 ⊕H0,1 = {f(z)dz} ⊕ {g(z̄)dz̄}

where H1,0 are the holomorphic 1-forms and H0,1 are the antiholomorphic 1-forms. The Hodge
filtration F associated to this Hodge structure is

H1(E,C) ⊇ {f(z)dz} ⊇ 0.
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2. POLARIZED HODGE STRUCTURES

We introduce the notion of a polarization on a Hodge structure.

Definition 2.1. A polarization for a Hodge structure (HZ, H
p,q) of weight n is a nondegenerate

bilinear form Q : HZ × HZ → Z which extends to HC by linearity and is symmetric if n is even
and alternating if n is odd. We also require that Q be subject to the following relations:

(2.1.1) Q(Hp,q, Hp′,q′) = 0 if (p′, q′) 6= (q, p).

(2.1.2) ip−qQ(x, x̄) > 0 for nonzero x ∈ Hp,q.

These conditions are called the Hodge-Riemann bilinear relations. In terms of the filtration F , the
relations become:

(2.1.1’) Q(F p, F n−p+1) = 0.

(2.1.2’) Q(CFx, x̄) > 0 for nonzero x.

where CF is the Weil operator defined by CF (x) := ip−qx for x ∈ Hp,q.

Definition 2.2. A polarized Hodge structure of weight n, denoted (HZ, F,Q), is a pure Hodge
structure (HZ, F ) with a polarization Q for (HZ, F ).

Let us contextualize this definition. The additional data of a polarization will allow us to construct
a period domain that classifies polarized Hodge structures. This polarization data is quite natural.
In the following, we consider a large class of naturally occurring polarized Hodge structures.

Example 2.3. Fix a compact Kähler manifold X with Kähler form ω. Fix an integer k ≥ 0. Let
(HZ, H

p,q) be the pure Hodge structure obtained from the primitive kth cohomology of X . We use
ω to define a nondegenerate bilinear form Q : HZ ×HZ → Z by

Q(α, β) := (−1)k(k−1)/2
∫
X

α ∧ β ∧ ωdim(X)−k.

This formQ is a polarization for (HZ, H
p,q) so we get the polarized Hodge structure (HZ, H

p,q, Q).

Example 2.4. Let us specialize to elliptic curves and work out the details. We have the Hodge
structure on E as in Example 1.3. In the context of example 2.3, we have k = 1 and E is a 1-
dimensional manifold so the bilinear formQ isQ(α, β) =

∫
E
α∧β. ObserveQ is alternating since

Q(α, β) =
∫
E
α∧β = −

∫
E
β ∧α = −Q(β, α). We need only check the Hodge-Riemann bilinear

relations to verify that Q is a polarization. We first check (2.1.1). As there are only two nonzero
Hp,q in the decomposition, it suffices to show thatQ(α, β) = 0 where α and β are both (1, 0) forms
or both (0, 1) forms. Thus α∧β is locally of the form fdz∧dz or fdz̄∧dz̄ which are both zero so
Q(α, β) =

∫
E
α∧β = 0. Now we need to check (2.1.2). Take any α ∈ H1,0 a nonzero holomorphic

1-form. Locally α = fdz and ᾱ = f̄dz̄ so iα ∧ ᾱ is locally i|f |2dz ∧ dz̄ = 2|f 2|dx ∧ dy which
always has positive integral locally. Thus i1−0Q(α, ᾱ) = i

∫
E
α∧ ᾱ > 0. Any nonzero β ∈ H0,1 is

the conjugate of a holomorphic 1-form α so i0−1Q(β, β̄) = −iQ(ᾱ, α) = iQ(α, ᾱ) > 0. We have
verified that Q satisfies the Hodge-Riemann bilinear relations so Q is a polarization. We identify
HZ = H1(E,Z) and Z2 with canonical basis α, β by taking the Poincaré dual of the canonical
basis of H1(E,Z) so that the matrix of Q with respect to this basis is[

0 1
−1 0

]
.
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3. DIGRESSION ON GRASSMANIANS AND FLAG VARIETIES

Before we finally construct the period domain of a polarized Hodge structure, we must first discuss
Grassmanians and flag varieties which will be important in constructing our desired classifying
space. The Grassmanian parameterizes fixed dimensional subspaces of a complex vector space
and that notion is captured as follows:

Definition 3.1. Let V be a complex vector space. Let Grass(k, V ) denote the set of complex vector
subspaces of V of dimension k. This space carries the structure of a projective manifold. This is
realized by the Plücker embedding Grass(k, V ) ↪→ P(

∧kW ) which associates to a k-dimensional
subspace W ⊆ V the line [α1 ∧ · · · ∧ αk] ∈ P (

∧kW ) where αi form a basis of W in V . This is
well-defined since two bases of W differ by a change of basis matrix which will induce the same
wedge product up to a nonzero constant so they determine the same line.

We are also interested in abstract flag varieties as they correspond to spaces of filtrations.

Definition 3.2. Fix a sequence a1 < a2 < · · · < ak < n. The variety of flags is

F(a1, . . . , ak;V ) := {W1, . . . ,Wk : W1 ⊂ · · · ⊂ Wk} ⊂ Grass(a1, V )× · · · ×G(ak, V ).

This is a smooth subvariety of the product of Grassmanians.

4. PERIOD DOMAINS

The notion of a variation of Hodge structures will motivate our definition of a period domain.
Consider the following scenario: Let f : X → ∆ be a proper smooth surjective morphism onto
a complex polydisc ∆ where each fiber F is a compact Kähler manifold. Each such F has a
natural polarized Hodge structure on cohomology for each k. Ehresmann’s theorem implies that the
underlying lattice of these polarized Hodge structures are uniquely isomorphic and that the hodge
numbers are all equal. However the Hodge filtration (equivalently the Hodge decomoposition) is
not necessarily preserved under the natural isomorphism. We thus introduce a space that classifies
the filtrations.

Definition 4.1. Fix a polarized Hodge structure (HZ, F,Q) of weight n and type (hp,q). The
period domain D of this data is the space of all pure Hodge structures with underlying lattice HZ
of weight n and type (hp,q) for which Q is a polarization. Formulated in terms of filtrations, the
period domain may be defined to be the space of all filtrations

HC = F 0 ⊂ F 1 ⊂ · · · ⊂ F n ⊂ {0},

where dim(F p) =
∑

i≥p h
i,n−i, on which Q satisfies (2.1.1) and (2.1.2).

The latter formulation in terms of filtrations is the one we will primarily use to describe this space
geometrically. We associate another manifold to the period domain D.

Definition 4.2. The compact dual Ď is the same underlying set as the period domain except that
we remove the requirement that the second Hodge-Riemann bilinear relation is satisfied.

The first Hodge-Riemann bilinear relation is a closed condition. In this way, the compact dual Ď
is a closed submanifold of a flag variety and thus is a compact complex manifold. The second
Hodge-Riemann bilinear relation is an open condition and realizes the period domain D as a open
subset of Ď.
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Remark 4.3. BothD and Ď are homogeneous spaces. Fix a polarized Hodge structure (H0, F0, Q0) ∈
D. Let G be the automorphisms of H0,R preserving Q0 and GC the complexification of G. The
group G acts transitively on D and GC acts transitively on Ď.

Example 4.4. Again lets continue from Example 2.4. We identify the corresponding period domain
and compact dual of an elliptic curve. The underlying lattice is Z2 and the form Q on the lattice is[

0 1
−1 0

]
.

The set of relevant filtrations in D are those of the form

C2 ⊃ F 1 ⊃ {0}
where dimF 1 = 1 and on which Q satisfies (2.1.1) and (2.1.2). A point in D is thus determined
by λ ∈ C2 spanning F 1 on which Q(λ, λ) = 0 and iQ(λ, λ̄) > 0. We write λ = z1α + z2β
where z1, z2 ∈ C in terms of the canonical basis α, β so that the Hodge-Riemann relations become
z1z2− z2z1 = 0 and i(z1z̄2− z2z̄1) > 0. Note that the first relation always holds in this case so the
compact dual Ď is identifiable with CP1 as every line in C2 yields a valid point of Ď. The second
condition implies that z1 6= 0 so we may scale λ to be α + z2β. Then the final condition become
Im(z2) > 0. Specifying z2 determines λ so the period domain is the complex upper half plane h.

We are also interested in classifying isomorphism classes of polarized Hodge structures which
leads to the notion of a period space.

Definition 4.5. Let Γ be the group of automorphisms of HZ preserving Q, that is,

Γ := {g : HZ → HZ : Q(gx, gy) = Q(x, y) for all x, y ∈ HZ}.
The group Γ is a group of matrices with integral coefficients which acts on the period domain
D. The quotient Γ\D is called the period space and classifies the isomorphism classes of Hodge
structures.

Example 4.6. We determine the period space of elliptic curves with the period domain D = h
identified in Example 4.4. The group Γ of linear transformations Z2 → Z2 that preserve the
bilinear form Q is exactly the group SL(2,Z). The action of Γ on h is[

a b
c d

]
· z =

c+ dz

a+ bz
.

The negative identity matrix acts trivially so we get an induced action by PSL(2,Z) on D and the
period domain Γ\D ∼= PSL(2,Z) which is the classical moduli space of elliptic curves. From this
we can see that an elliptic curve is completely characterized by it’s polarized Hodge structure up
to isometry.
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