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Moduli space

X smooth projective variety over C of dimension n.
Compactify “moduli space of holomorphic vector bundles on X”:

Have to include torsion free sheaves on X :

E is torsion free if Supp(F) = X for all 0 6= F ⊆ E .

Construct the moduli space of torsion free sheaves on X using
GIT:

Fix rank and Chern classes: r , c1, ..., cn.

Fix a polarization H on X and consider H-stable sheaves.

Get moduli space MH
X (r , c1, ..., cn).

Assuming gcd(r , c1 · Hn−1) = 1, the moduli space is projective.
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Generating function of Euler characteristics

Consider generating function of Euler characteristics

Gc1,...,cn−1(q) =
∑

cn

e(MH
X (r , c1, ..., cn))qcn .

dimX = 2: we see relations to (quasi) modular forms/theta type
series, S-duality conjecture from physics (Vafa-Witten, Manschot,
Toda, G-Jiang-Kool,...).
E.g. X a surface, r = 1:
If H1(OX ) = 0 then MH

X (1, c1, c2) = Hilbk(X ) for k = k(c1, c2):
Göttsche (1990)

G0(q) =
∏
k>0

1

(1− qk)e(X )
= qe(X )/24η(q)−e(X ).
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Threefolds

X 3-fold, r = 1,

If H1(OX ) = 0 then MH
X (1, c1, c2, c3) = Hilbβ,k(X )

for k ∈ Z≥0, β ∈ H2(X ,Z) determined by c1, c2, c3.
c1 = c2 = 0: Cheah (1996)

G0,0(q) = M(q)e(X ),

where

M(q) =
∑
π

q|π| =
∏
k>0

1

(1− qk)k
McMahon function.

When X is toric the problem is reduced to counting the number of
e(X )-tuples of 3D partitions.
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Reflexive hulls

For torsion free sheaf E define E∗ = Hom(E ,OX ). Then E ↪→ E∗∗
and E∗∗ is called reflexive hull of E .

Torsion free sheaves for which E ↪→ E∗∗ is an isomorphism are
called reflexive.
Reflexive hulls are reflexive. Reflexive sheaves are much easier than
torsion free sheaves. Reflexive sheaves are locally free outside finite
number of points (singularities).
Moduli of reflexive sheaves (non-compact!): NH

X (r , c1, c2, c3).
There exists a constructible map

()∗∗ :MH
X (r , c1, c2, c3)→

∐
c ′2,c
′
3

NH
X (r , c1, c

′
2, c
′
3).

fibre over R is

Quot(R, c ′′2 , c
′′
3 ) := {R → Q → 0 | c2(Q) = c ′′2 , c3(Q) = c ′′3 }.
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Reflexive hulls

Idea: When X toric with torus T compute e(MH
X (r , c1, c2, c3))

from:
e(NH(r , c1, c

′
2, c
′
3)T ), e(Quot(R, c ′′2 , c

′′
3 )T ).

G-Kool (2013) Rank 2

For X nonsingular toric threefold NH
X (2, c1, c

′
2, c
′
3)T can be

described explicitly. It is a union of configuration spaces of distinct
points on P1.
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Example: Reflexive sheaves on P3

We distinguish three types of T -fixed components: type 1
(generic) and types 2 and 3 (degenerations of type 1).

Type 1 are
configuration space of 4 distinct points on P1 modulo the action of
SL2(C), whereas types 2 and 3 are isolated.

G-Kool (2013)

For any c1, c2, there are explicit subsets Di (c1, c2) ⊂ Z4
≥0,

i = 1, 2, 3 defined by explicit polynomial equalities and inequalities,
such that

G refl
2,c1,c2(q) =

∑
v∈D1(c1,c2)

−qC1(v)+
∑

v∈D2(c1,c2)

6qC2(v)+
∑

v∈D3(c1,c2)

4qC3(v)

C1(v) =
∑

1≤i<j<k≤4
vivjvk ,C2(v) = (v1 + v2)v3v4,C3(v) = v1v2v3.

E.g. For c1 = −1 and c2 = 1, 2, 3, . . .

G refl
2,−1,c2(q) = 4q, 24q4,−4q7 + 36q9, . . .
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Polynomiality and upper bound

G refl
2,c1,c2

(q) is a polynomial for any smooth projective 3-fold.

It can be seen that c3 ∈ H6(X ,Z) ∼= Z for a rank 2 stable reflexive
sheaf is bounded by 0 from below and a constant from above.
Finding the constant is a hard problem in general.

Hartshorne 1980, G-Kool (only for T -equivariant)

R rank 2 stable reflexive sheaf on X = P3 with Chern classes
c1, c2, c3.

1 c3 = c1c2 mod 2, if c1 ∈ {−1, 0}, then c2 > 0,

2 if c1 = −1, then 0 ≤ c3 ≤ c22 , and if c1 = 0, then
0 ≤ c3 ≤ c22 − c2 + 2. Both upper bounds are sharp.

G-Kool

For c2 > 1, e(NP3(2,−1, c2, c
2
2 )) = 12c2.



Polynomiality and upper bound

G refl
2,c1,c2

(q) is a polynomial for any smooth projective 3-fold.

It can be seen that c3 ∈ H6(X ,Z) ∼= Z for a rank 2 stable reflexive
sheaf is bounded by 0 from below and a constant from above.
Finding the constant is a hard problem in general.

Hartshorne 1980, G-Kool (only for T -equivariant)

R rank 2 stable reflexive sheaf on X = P3 with Chern classes
c1, c2, c3.

1 c3 = c1c2 mod 2, if c1 ∈ {−1, 0}, then c2 > 0,

2 if c1 = −1, then 0 ≤ c3 ≤ c22 , and if c1 = 0, then
0 ≤ c3 ≤ c22 − c2 + 2. Both upper bounds are sharp.

G-Kool

For c2 > 1, e(NP3(2,−1, c2, c
2
2 )) = 12c2.



Polynomiality and upper bound

G refl
2,c1,c2

(q) is a polynomial for any smooth projective 3-fold.

It can be seen that c3 ∈ H6(X ,Z) ∼= Z for a rank 2 stable reflexive
sheaf is bounded by 0 from below and a constant from above.
Finding the constant is a hard problem in general.

Hartshorne 1980, G-Kool (only for T -equivariant)

R rank 2 stable reflexive sheaf on X = P3 with Chern classes
c1, c2, c3.

1 c3 = c1c2 mod 2, if c1 ∈ {−1, 0}, then c2 > 0,

2 if c1 = −1, then 0 ≤ c3 ≤ c22 , and if c1 = 0, then
0 ≤ c3 ≤ c22 − c2 + 2. Both upper bounds are sharp.

G-Kool

For c2 > 1, e(NP3(2,−1, c2, c
2
2 )) = 12c2.



Polynomiality and upper bound

G refl
2,c1,c2

(q) is a polynomial for any smooth projective 3-fold.

It can be seen that c3 ∈ H6(X ,Z) ∼= Z for a rank 2 stable reflexive
sheaf is bounded by 0 from below and a constant from above.
Finding the constant is a hard problem in general.

Hartshorne 1980, G-Kool (only for T -equivariant)

R rank 2 stable reflexive sheaf on X = P3 with Chern classes
c1, c2, c3.

1 c3 = c1c2 mod 2, if c1 ∈ {−1, 0}, then c2 > 0,

2 if c1 = −1, then 0 ≤ c3 ≤ c22 , and if c1 = 0, then
0 ≤ c3 ≤ c22 − c2 + 2. Both upper bounds are sharp.

G-Kool

For c2 > 1, e(NP3(2,−1, c2, c
2
2 )) = 12c2.



Assumption for most of the talk

X toric 3-fold, H polarization, r = 2, c1 s.t. gcd(2, c1 · H) = 1.

Assumption: c2 is chosen such that:

1 c2 · H minimal for which there exist rank 2 stable sheaves on
X with Chern classes c1, c2.
(By Bogomolov’s inequality 4c2 · H ≥ c21 · H)

2 All T -fixed rank 2 stable reflexive sheaves on X with Chern
classes c1, c2 are isolated.

Many examples for this minimal c2. Possibly (1)⇒ (2)?
E.g. X = P3, c1 = −1, c2 = 1.
Consequences:

If E ∈ MH
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Generating function

Idea: Consider reflexive hulls of E ∈ MH
X (2, c1, c2, c3)T .

There are finitely many such reflexive hulls R, and they can be
explicitly computed. They are singular at at most one T -fixed
point of X .
Suppose the length of the singularity of this R is s.
Components of Quot(R, s − c3)T are isomorphic to

P1 × · · · × P1

and they are indexed by certain new configurations of 3D
partitions.

G-Kool-Young

If c1, c2 satisfy the assumption, then G2,c1,c2(q) is given by
M(q)2e(X ) times

∑
R locally free

1 +
∑

R singular

v1(R)∏
i=1

v2(R)∏
j=1

v3(R)∏
k=1

1− qi+j+k−1

1− qi+j+k−2 .
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Comments and Example

The integers v1(R), v2(R), v3(R) > 0 measure the length of the
singularity of R.

Corollary, X = P3, Rank 2

G−1,1(q) = 4(q + q−1)M(q−2)8.

G−1,2(q) = 12

(
2q−4 − q−2 + 1− 4q2 + 3q4 + 5q8

(1− q2)2

)
M(q−2)8.

For c2 = 2 the quotients are no longer 0-dimensional. For c2 = 3
the T -fixed reflexive hulls are no longer isolated.
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Virtual counts

The moduli spaces such as M =M(X , r , c•) are usually highly
singular and have no fundamental class.

However, using deformation/obstruction theory of the moduli
space one may be able to construct a well-behaved virtual
fundamental class.
For singular schemes M, the cotangent bundle is replaced by the
cotangent complex L•M with h0(L•M) = ΩM and hi (L•M) = 0 for
i > 0.
A perfect obstruction theory on M consists of a 2-term complex
E • = [E−1 → E 0] of vector bundles on M together with a
morphism (in the derived category) φ : E • → L•M such that

h0(φ) isomorphism and h−1(φ) surjective.

If M is equipped with a perfect obstruction theory then one can
define a cycle [M]vir ∈ Ad (M) for d = rkE 0 − rkE−1 called the
virtual fundamental class.
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MNOP theory

X nonsingular threefold β ∈ H2(X ,Z) .

Rank 1 Donaldson-Thomas invariant (MNOP) are defined by
virtual integration against Hilbβ,n(X ).
Determinant gives the natural morphism
MH

X (1, c1, c2, c3)→ Pic(X ).
Fixing determinants to be O gives the closed subscheme
Hilbβ,n ⊂MH

X (1, 0, c2, c3).
The perfect obstruction theory on Hilbβ,n is obtained by removing
the ob. theory of Pic(X ) (governed by Ext i (O,O) = H i (OX ))
from the ob. theory of M (governed Ext i (E , E)) i.e. resulting in
trace-free Ext groups Ext i (E , E)0.
K-group fiber of the MNOP ob. theory

χ(E , E)0 = χ(E , E)− χ(OX )

at any moduli point E ∈ M.
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Rank 2 DT theory

Fixing reflexive hulls to be R, we identify a closed subscheme
Quot(R)β,n ⊂MH

X (2, c1, c2, c3).

R is always stable, so it belongs to a moduli space N .
Question: Mimicking rank 1 case, can we remove the deformation
obstruction of R ∈ N from M to define perfect ob. theory on
Quot(R)β,n?
We do this in the level of T -fixed sets when X is a toric threefold.
If E ∈ Quot(R)T

β,n ⊂MT , and R ∈ NT then, we define a perfect

obstruction theory on MT whose K-group fiber is given by
χ(E , E)− χ(R,R).
This is a symmetric obstruction theory on MT if X is a CY3.
Under the assumption, we have β = 0, and the obstruction theory
is symmetric for any X .
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Virtual localization

If X is equipped with a torus action (e.g. if X toric)

Virtual localization formula (Graber-Pandharipande):

[M]vir = ι∗
∑
C⊂MT

[C]vir

e(Nvir
C )
∈ AT

∗ (M)loc .

Topological vertex is an algorithm for evaluating GW/DT/PT
invariants of toric threefolds.
The vertex theory of Rank 1 DT invariants and the stable pair
invariants were developed by MNOP and PT.
These vertex theories were used to prove the GW/MNOP/PT
correspondence in the case of toric varieties.
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Rank 2 Donaldson-Thomas vertex

X toric 3-fold, H0(K ∗X ) 6= 0, and H, r = 2, c1, c2 satisfying
assumption.

MH
X (2, c1, c2, c3) carries a perfect obstruction theory

E •.
hi (E •∨)E = Ext i+1(E , E) i = 0, 1.

Analogous to MNOP and PT we set up a vertex/leg formalism for
the localized virtual cycle

[M]vir =
∑

C⊂MT components

ι∗
e(TC)

e(E •∨|C)
∩ [C].

For each fixed point α ∈ Uα ⊂ X let Eα = E|Uα ,Rα = R|Uα where
R = E∗∗. For n ∈ Z≥0, let Cα ⊂ Quot(Rα, n)T containing Eα.
For any polynomial P let P(t1, t2, t3) := P(t−11 , t−12 , t−13 ).
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Equivariant vertex

Define

Vα := trχ(Rα,Rα)−χ(Eα,Eα) =
P(Rα)P(Rα)− P(Eα)P(Eα)

(1− t1)(1− t2)(1− t3)

where P is the Poincaré polynomial.

Vα is a Laurent polynomial in
the torus characters t1, t2, t3 with coefficients in K (Cα).
Define

w(Cα) =

∫
Cα

e(TCα) · e(−Vα) ∈ Q(s1, s2, s3).

si is the first Chern class of the line bundle over BT associated to
the character ti .
We define rank 2 DT vertex WRα(q) ∈ Q[[q]](s1, s2, s3),

WRα(q) = 1 +
∑

n

∑
Cα

w(Cα)qn.
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where P is the Poincaré polynomial. Vα is a Laurent polynomial in
the torus characters t1, t2, t3 with coefficients in K (Cα).

Define

w(Cα) =

∫
Cα

e(TCα) · e(−Vα) ∈ Q(s1, s2, s3).

si is the first Chern class of the line bundle over BT associated to
the character ti .
We define rank 2 DT vertex WRα(q) ∈ Q[[q]](s1, s2, s3),

WRα(q) = 1 +
∑

n

∑
Cα

w(Cα)qn.



Equivariant vertex

Define

Vα := trχ(Rα,Rα)−χ(Eα,Eα) =
P(Rα)P(Rα)− P(Eα)P(Eα)

(1− t1)(1− t2)(1− t3)
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CY3 specialization

Conjecture (G-Kool-Young)

WRα,∅,∅,∅(q)|s1+s2+s3=0 is equal to M(q)2 times{
1 R locally free∏v1(R)

i=1

∏v2(R)
j=1

∏v3(R)
k=1

1−qi+j+k−1

1−qi+j+k−2 R singular

Evidence 1: Some direct calculations.
Evidence 2: Conjecture follows from analogs of two conjectures of
PT by T0-localization,

T0 = {t ∈ T |t1t2t3 = 1}.

One is about the smoothness of the T0-fixed locus, and the other
is about the parity of the constant terms after the specialization
t1t2t3 = 1.
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Localization

Consider C3 = Spec C[x , y , z ] with standard action T = C∗3.

Quasi-coherent sheaf F on C3 ↔ C[x , y , z ]-module H0(F).

T -equivariant F ↔ H0(F) = ⊕(k1,k2,k3)∈Z3F (k1, k2, k3).

Equivalent data: collection of vector spaces
{F (k1, k2, k3)}(k1,k2,k3)∈Z3 and linear maps

χ1(k1, k2, k3) : F (k1, k2, k3)→ F (k1 + 1, k2, k3),

χ2(k1, k2, k3) : F (k1, k2, k3)→ F (k1, k2 + 1, k3),

χ3(k1, k2, k3) : F (k1, k2, k3)→ F (k1, k2, k3 + 1),

such that χi ◦ χj = χj ◦ χi for all i , j , (k1, k2, k3).
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Localization

F coherent ⇔ ∃ finitely many homogeneous generators.

F torsion free ⇔ all maps are inclusions:

F (k1, k2, k3) ⊂ F (k1 + 1, k2, k3),

F (k1, k2, k3) ⊂ F (k1, k2 + 1, k3),

F (k1, k2, k3) ⊂ F (k1, k2, k3 + 1).

⇒ When rank(F) = r then get a multi-filtration of Cr .

F reflexive ⇔ ∃ filtrations

F (k ,∞,∞),F (∞, k ,∞),F (∞,∞, k)

s.t. F (k1, k2, k3) = F (k1,∞,∞) ∩ F (∞, k2,∞) ∩ F (∞,∞, k3).
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rank 2 reflexive sheaves

When r = 2 and F = R reflexive, to give three flags of C2 we
need:

1 three integers ui ∈ Z where flag i jumps from 0 to pi ∈ P1,

2 three integers u′i ≥ ui where flag i jumps from pi to C2.

Define vi = u′i − ui ≥ 0.

R is singular ⇔ all vi > 0 and all pi ∈ P1 are mutually distinct.

Globally on toric 3-fold X : combine such a description for each
chart with gluing conditions.
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T -equivariant stable reflexive rank 2 sheaves on P3

Explicit formula for ch(R) can be obtained in terms of
ui , vi , dim(pi ∩ pj ) (T -equivariant dévissage).

Consequence: R is stable ⇔ ∀q ∈ P1

4∑
i=1

dim(pi ∩ q)vi <
1

2

4∑
i=1

vi .

Classification of stable reflexive sheaves (G-Kool)

1 Type I: 0 < vi < vj + vk + vl ∀{i , j , k , l} = {1, 2, 3, 4} and all
pi are mutually distinct,

2 Type II: v1, v2, v3, v4 > 0, ∃{i , j , k , l} = {1, 2, 3, 4} such that
vi + vj < vk + vl , vk < vi + vj + vl , vl < vi + vj + vk , pi = pj ,
and pj , pk , pl are mutually distinct,

3 Type III: ∃{i , j , k , l} = {1, 2, 3, 4} such that
vi = 0, vj , vk , vl > 0, vj < vk + vl , vk < vj + vl , vl < vj + vk ,
and pj , pk , pl are mutually distinct.
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and pj , pk , pl are mutually distinct.
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T -equivariant stable reflexive rank 2 sheaves on P3

Consequences: Get scheme theoretic description of

NP3(2, c1, c2, c3)T .
Get a combinatorial proof for Hartshorne’s inequalities.

O := (u1, u2, u3), S := (u1 + v1, u2 + v2, u3 + v3),
P1 := (u1, u2 + v2, u3 + v3), P2 := (u1 + v1, u2, u3 + v3),
P3 := (u1 + v1, u2 + v2, u3). B is the box with sizes v1, v2, v3 and
opposite vertices O and S . The S-region is the shift of the first
quadrant to S .
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Quot(R , n)T

R is T -equivariant rank 2 reflexive sheaf on C3 and n ∈ Z≥0.
We would like to describe 0-dimensional quotients R → Q → 0
such that `(Q) = n.

Let π = (π1, π2, π3) be a triple of 3D partitions where πi is placed
at Pi , satisfying:
Any box in the S-region must be in the intersection of at least 2 of
πi s.
We say π ∼ π′ if

∪πi = ∪π′i , ∩πi = ∩π′i .

Define #(π) := #(∪πi )−#((∪πi ) ∩ (S-region)).
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Quot(R , n)T

We say a box at (x1, x2, x3) in the S-region supported if there is a
box at all the three points:

(x1 − i1, x2, x3), (x1, x2 − i2, x3), (x1, x2, x3 − i3)

where ij is minimal with the property that the above points are no
longer in S-region.

Red boxes: Any box in the intersection of 3 partitions is colored
red.
White boxes: Any box in the intersection of 2 partitions is colored
white.
Let C be a connected components of white boxes. We say C is
supported if all boxes in C are supported.
Each supported component C is labeled by a point in P1.

Theorem G-Kool

Quot(R, n)T ↔ {[π]labeled | #π = n}.
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Triple of 3D partitions

#=32+18+14-11=53

Placed at P3, 18 boxes

Placed at P1, 14 boxes

Placed at P2, 32 boxes

s

s

Three components of white boxes: Two are unsupported (hence
unlabeled), and one is supported (labeled with s ∈ P1).
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Triple of 3D partitions

Consequence: Components of Quot(R, n)T are isomorphic to

(P1)k where

k = # of labeled white components.

E.g. In picture above k = 1.
Define

Gu,v(q) =
∑
[π]

2k(π)q#(π)

sum over equivalence classes of triple partitions.
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Formula

(G-Kool-Young)

For any integers u1, u2, u3 and v1, v2, v3 > 0 we have

Gu,v(q) = M(q)2
v1∏

i=1

v2∏
j=1

v3∏
k=1

1− qi+j+k−1

1− qi+j+k−2 .

where M(q) denotes the MacMahon function.

Remark:
Gu,v(q)
M(q)2

is the generating function of the number of 3D

partitions embedded in the box B. But the box configurations
leading to Gu,v(q) all have empty intersections with B!!
In the combinatorial proof the role of B is not clear, but B plays a
big role in geometric proof we found later.
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Dimer model

The combinatorial proof is via double dimer models:

s

s

Labeled boxes correspond to loops in the dimer model. There is no
bijection between the triple of partitions and double dimer models.
However, their generating functions match.
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Geometric proof

Theorem (Hartshorne-Serre correspondence)

Let X be a smooth projective 3-fold and L a line bundle on X
satisfying H1(L) = H2(L) = 0. Then there exists a bijection
between:

1 Pairs (R, σ), where R is a rank 2 reflexive sheaf on X with
det(R) ∼= L and σ : R → OX a cosection cutting out a
1-dimensional closed subscheme.

2 Pairs (C , ξ), where C ⊂ X is a Cohen-Macaulay curve which
is generically lci and ξ : OX → ωC ⊗ ω−1X ⊗ L has
0-dimensional cokernel.

1 in theorem gives 0→ L→ R → IC → 0. So

R ∈ Ext1(IC , L) ∼= Ext2(OC , L)

∼= Ext1(L,OC ⊗ ωX )∗

∼= H1(C , ωX ⊗ L−1|C )∗

∼= H0(C , ωC ⊗ ω−1X ⊗ L).
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Geometric proof

Applying Hom(·, L) to s.e.s above gives

0 −→ L→ R∗ ⊗ L→ OX
ξ−→ Ext1(IC , L)→ Ext1(R, L)→ 0.

Notation: F codimension c sheaf, L line bundle define

FD
L := Extc (F , L).

Note ωC = Ext2(OC , ωX ) so ωC ⊗ ω−1X ⊗ L = (OC )D
L .

Ext1(R, L) is a 0-dimensional sheaf supported on Sing(R).

Ext1(IC , L) ∼= Ext2(OC , L) = (OC )D
L .

(OC )D
L is pure 1-dimensional sheaf (supported on C) and

coker ξ is 0-dimensional (i.e. PT stable pair!).

C is not lci exactly at Sing(R).
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Ext groups

If IC (resp. R) is the ideal sheaf of a CM curve (resp. rank 2
reflexive sheaf) and Q a 0-dimensional sheaf, the only nonzero Ext
groups are

Hom(IC ,Q),Ext1(IC ,Q) Hom(R,Q),Ext1(R,Q)

and their Serre duals.

More symmetrically we write,

Ext1(IC ,Q[−1]),Ext1(Q[−1], IC ) Ext1(R,Q[−1]),Ext1(Q[−1],R).

Furthermore,

dim Ext1(IC ,Q[−1])− dim Ext1(Q[−1], IC ) = `(Q),

dim Ext1(R,Q[−1])− dim Ext1(Q[−1],R) = 2`(Q),

only depend on `(Q) := length(Q).
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Quot schemes

Let Quot(R) :=
⊔∞

n=0 Quot(R, n).

Set theoretically

Quot(R) =
⊔

Q∈T
Hom(R,Q)onto ,

where T denotes the stack of all 0-dimensional sheaves on X and
“onto” refers to the subset of surjective maps in

Hom(R,Q) ∼= Ext1(R,Q[−1]).

Conclusion the first nonzero Ext group Ext1(R,Q[−1]) governs the
quot scheme Quot(R).
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PT stable pairs

F ∈ Ext1(Q[−1], IC ) ∼= Ext2(Q, IC ) ∼= Ext1(Q,OC )

corresponds to 0→ OC → F → Q → 0.

Let Ext1(Q,OC )pure be the locus where F is pure (i.e. OC → F is
PT stable pair).
Given (R, σ)↔ ((OC )D

L , ξ) as in Serre correspondence, ∃ natural
injection

Ext2(Q,R) ∼= Ext1(Q[−1],R) ↪→ Ext1(Q[−1], IC ).

Define Ext2(Q,R)pure := Ext2(Q,R) ∩ Ext1(Q,OC )pure .
Conclusion the second nonzero Ext group Ext1(Q[−1],R) governs
the ‘specific’ sub-locus of PT stable pairs with support C denoted
by P(C ).
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Specific PT pairs and 1st main result

Define P(R, σ) :=
⊔

Q∈T Ext2(Q,R)pure ⊂ P(C ).

Theorem G-Kool

Given (R, σ)↔ ((OC )D
L , ξ) as in Serre correspondence, ∃ natural

bijection
P(R, σ)↔ Quot(Ext1(R,OX )).

Recall Ext1(R,OX ) is a 0-dimensional sheaf supported on Sing(R).
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Hall Algebra

Let H(T ) := K (St/T ) the Grothendieck group of stacks (locally of
finite type and with affine geometric stabilizers) over T .

Let T 2 be the stack of short exact sequences
0→ Q1 → Q → Q2 → 0 in T and let πi be the map induced by
sending this short exact sequence to Qi .
For any two (T -isomorphism classes of) T -stacks [U → T ] and
[V → T ], the product [U ∗ V → T ] is defined by the Cartesian
diagram

U ∗ V

��

// T 2

��

// T

U × V // T × T .

This makes (H(T ), ∗) into an associative algebra, known as
motivic Ringel-Hall algebra (Joyce, Bridgeland,
Kontsevich-Soibelman, Stoppa-Thomas).
10 is the identity (the stack consisting of the zero sheaf with the
inclusion into T ).
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Some elements of Hall Algebra

Given (R, σ)↔ ((OC )D
L , ξ) as in Serre correspondence, we define

1T is the identity map T → T ,

Hom(R, ·) is the stack whose fibre over Q ∈ T is Hom(R,Q),

Hom(R, ·)onto is the stack whose fibre over Q ∈ T is
Hom(R,Q)onto ,

Ext2(·,R) is the stack whose fibre over Q ∈ T is Ext2(Q,R),

Ext2(·,R)pure is the stack whose fibre over Q ∈ T is
Ext2(Q,R)pure .

Cr`(·) is the stack whose fibre over Q ∈ T is Cr`(Q).



Some elements of Hall Algebra

Given (R, σ)↔ ((OC )D
L , ξ) as in Serre correspondence, we define

1T is the identity map T → T ,

Hom(R, ·) is the stack whose fibre over Q ∈ T is Hom(R,Q),

Hom(R, ·)onto is the stack whose fibre over Q ∈ T is
Hom(R,Q)onto ,

Ext2(·,R) is the stack whose fibre over Q ∈ T is Ext2(Q,R),

Ext2(·,R)pure is the stack whose fibre over Q ∈ T is
Ext2(Q,R)pure .

Cr`(·) is the stack whose fibre over Q ∈ T is Cr`(Q).



Some identities in Hall Algebra

Using the inclusion-exclusion principle, we can write
Hom(R,Q)onto as

Hom(R,Q)−
⊔

Q1<Q

Hom(R,Q1) +
⊔

Q1<Q2<Q

Hom(R,Q1)− · · · ,

where < denotes strict inclusion.

Write 1T = 10 + 1T ′ . Then
1−1T = 10 − 1T ′ + 1T ′ ∗ 1T ′ − 1T ′ ∗ 1T ′ ∗ 1T ′ ∗+ . . . .
This leads to

Hom(R, ·)onto = Hom(R, ·) ∗ 1−1T .

Similarly,
Ext2(·,R)pure = 1−1T ∗ Ext2(·,R).
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Virtual Poincaré polynomial

Now let
Pz (·) : H(T ) −→ Q(z)[[q]],

denote the virtual Poincaré polynomial.

Here z is the formal
variable of Pz and q keeps track of an additional grading as
follows. Any element [U → T ] ∈ H(T ) is locally of finite type so
can have infinitely many components. Let Tn ⊂ T be the substack
of 0-dimensional sheaves of length n and define

Pz (U) :=
∞∑

n=0

Pz (U ×T Tn) qn.
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Wall-crossing formula

By Serre duality and Rieman-Roch Pz (·) is a Lie algebra
homomorphism to the abelian Lie algebra Q(z)[[q]] (Joyce,
Stoppa-Thomas):

If [U → T ], [V → T ] ∈ H(T ) then

Pz (U ∗ V ) = Pz (V ∗ U).

Furthermore, if both limz→1 Pz (U) and limz→1 Pz (V ) exist then

lim
z→1

Pz (U ∗ V ) = lim
z→1

Pz (U) lim
z→1

Pz (V ).
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Application to our setting

Define U := Hom(R, ·) ∗ (C2`(·))−1 and V := C2`(·) ∗ 1−1T .

lim
z→1

Pz (V )(q) = lim
z→1

Pz

(
Hom(O⊕2X , ·)onto

)
(q) = M(q)2e(X ),

lim
z→1

Pz (U)(q) = lim
z→1

Pz

(
Ext2(·,R)pure

)
(z2q)

=
∞∑

n=0

e
(

Quot(Ext1(R,OX ), n)
)
qn,

lim
z→1

Pz (U∗V ) = lim
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qn.
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2nd main result

Theorem G-Kool

Let R be a rank 2 reflexive sheaf on a smooth projective 3-fold X .
Suppose there exists a cosection R → OX cutting out a
1-dimensional closed subscheme. Then

∞∑
n=0

e
(

Quot(R, n)
)
qn = M(q)2e(X )

∞∑
n=0

e
(

Quot(Ext1(R,OX ), n)
)
qn.

Corollary

Let R be a singular rank 2 T -equivariant reflexive sheaf on C3 with
homogeneous generators of weights
(u1 + v1, u2 + v2, u3), (u1 + v1, u2, u3 + v3), (u1, u2 + v2, u3 + v3).
Then

∞∑
n=0

e
(

Quot(R, n)
)
qn = M(q)2

v1∏
i=1

v2∏
j=1

v3∏
k=1

1− qi+j+k−1

1− qi+j+k−2 .
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∞∑
n=0

e
(

Quot(Ext1(R,OX ), n)
)
qn.

Corollary

Let R be a singular rank 2 T -equivariant reflexive sheaf on C3 with
homogeneous generators of weights
(u1 + v1, u2 + v2, u3), (u1 + v1, u2, u3 + v3), (u1, u2 + v2, u3 + v3).
Then

∞∑
n=0

e
(

Quot(R, n)
)
qn = M(q)2

v1∏
i=1

v2∏
j=1

v3∏
k=1

1− qi+j+k−1

1− qi+j+k−2 .



3D partition with legs

Fix the outgoing 2D partitions λ1, λ2, λ3.

|π| := #{π ∩ ([0, 1, . . . ,N]3)} − (N + 1)
∑3

i=1 |λi | N � 0.

λ1 = 13

λ2 = 231

λ3 = ∅
|π| = 1 (with N = 4,
51− 5 · (3 + 7 + 0))

∑
π q
|π| can be expressed in terms of M(q) and the skewed Schur

functions. (Okounkov-Reshetikhin-Vafa )
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Infinite legs

Figure: All 3D partitions are allowed to have infinite legs. Two of the
white components is labelled so k = 2.



Example: (v1, v2, v3) = (2, 2, 1)

(3)

(2)

(1)

(1) M(q)2
1 + q + q2 + q3 + q4 + q6

1− q
.

(2) M(q)2
1 + q + q2 + q3 + q4 + q5

1− q
.

(3) M(q)2
1 + q2 + q3 + q4 + q5 + q6

1− q
.


