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Spatial/temporal geostatistical data often display:

@ Non-Gaussian skewed sampling distributions.
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Spatial/temporal geostatistical data often display:

Non-Gaussian skewed sampling distributions.
Positive continuous data.

Heavy right tails.

Bounded support.

Small data sets observed irregularly (gaps).
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Possible remedies:

@ Bayesian Transformed Gaussian (BTG): A Bayesian
approach combined with parametric families of nonlinear
transformations to Gaussian data.
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Possible remedies:

@ Bayesian Transformed Gaussian (BTG): A Bayesian
approach combined with parametric families of nonlinear
transformations to Gaussian data.

@ BTG provides a unified framework for inference and
prediction/interpolation in a wide variety of models,
Gaussian and non-Gaussian.

@ Will describe BTG and illustrate it using spatial and
temporal data.
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Introduction

Stationary isotropic Gaussian random fields

Let {Z(s)}, s € D c RY, be a spatial process or a random field.

A random field {Z(s)} is Gaussian if for all s1, ...,s, € D, the
vector (Z(s1), ..., Z(sn)) has a multivariate normal distribution.

{Z(s)} is (second order) stationary when for s,s +h € D we
have

(o) E(Z(s)) =n,
(¢) Cov(Z(s+h),Z(s)) = C(h).

The function C(-) is called the covariogram or covariance

function.
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Stationary isotropic Gaussian random fields

We shall assume that C(h) depends only on the distance | h||
between the locations s + h and s but not on the direction of h.

In this case the covariance function as well as the process are
called isotropic.

The corresponding isotropic correlation function is given by
K(l) = C(/)/C(0), where [ is the distance between points.
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Stationary isotropic Gaussian random fields

Useful special case: Matérn correlation

)
1 / | .
’ 1 it1=0

where 61 > 0,60> > 0, and kg, is @ modified Bessel function of
the third kind of order 65.
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Stationary isotropic Gaussian random fields

Matérn (1 = 8,0, = 3).
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Introduction

Stationary isotropic Gaussian random fields

Spherical correlation:

=

1=+ 1) <o
Ko =1 ¢ if />0

where 6 > 0 controls the correlation range.
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Stationary isotropic Gaussian random fields

Spherical (9 = 120).
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Stationary isotropic Gaussian random fields

Exponential correlation:
Ka(l) = eXp(/02 Iog 01 )7 61 € (07 1)7 b € (07 2]

Exponential (61 = 0.5,6> = 1).
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Stati isotropic Gaussian

Rational quadratic:

—05
Ko(l) = (1+ >
o =(1+3)
01 > 0,60, >0.
Rational quadratic (/1 = 12,60, = 8).
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Stationary isotropic Gaussian random fields

Clipped, at 3 levels, realizations from Gaussian random fields.
Left: Matérn (8,3). Right: spherical (120).
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Stationary isotropic Gaussian random fields

Clipped, at 3 levels, realizations from Gaussian random fields.
Left: exponential (0.5,1). Right: rational quadratic (12,8).

www.math.umd.edu/-bnk/bak/generate.cgi?4
Kozintsev (1999), Kozintsev and Kedem (2000).
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Spatial Prediction BTG

Ordinary Kriging.
Given the data
Z=(Z(s1),...,2Z(sn))

observed at locations {s,...,s,} in D, the problem is to
predict (or estimate) Z(sp) at location sy using the best linear
unbiased predictor (BLUP) obtained by minimizing

n n
E(Z(so) — Z A,-Z(s,-))2 subject to Z Ai=1
i=1 i=1
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Define
1 = (1,1,...,1), 1 x nvector
c = (0(50—31)7---70(30—%)),
C = (C(S,‘—Sj)), ihj=1,...n
)‘ = ()\17)‘27' 7)‘n)/
Then
2 1-1C'c
_ -1
A=C <c+ 17011 1).

The ordinary kriging predictor is then

N ~/

Z(So) =AZ
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Spatial Prediction BTG
Define,
~1-1Cc
- 1cM

and the kriging variance

of(s0) = E(Z(s0) — Z(s0))° = C(0) - X'c + m.

Under the Gaussian assumption,

Z(so) £ 1.9604(S0)

is a 95% prediction interval for Z(sp). For non-Gaussian fields
this may not hold.
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Bayesian Spatial Prediction: The BTG Model

RF {Z(s), s € D} observed at s4,...,s, € D. Parametric
family of monotone transformations

g=A{a():ren}

(x) Assumption: Z(.) can be transformed into  a Gaussian
random field by a member of G.

A useful parametric family of transformations often used in
applications to ‘normalize’ positive data is the Box-Cox (1964)
family of power transformations,

[ X A £0
(%) = { 0g(x) ifA<0 "
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For some unknown ‘transformation parameter’ A € A,
{9,(Z(s)), s € D} is a Gaussian random field with

E{QA } Z 5]

cov{ga(Z(s)), gr(Z(u))} = 7~ Ky(s, u),
Regression parameters: 8 = (51,...,5p)’
Covariates: f(s) = (fi(s),. .., f(s))

Variance: 7= = var{g\(Z(s))}
Simplifying assumption: Isotropy,

Kg(s.u) = Kg(lls—ul]), 6=(b1,...,05) c©CR?
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Spatial Prediction BTG

Data: Zyps = (21,obS> e 7Zn,obs)
D (Ziobs) = 9r(Z(s))) +€i; i=1,...,n,

€1,... enareiid. N(O,%).
Parameters: n = (3, 7,£,6, \).
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Prediction problem:

Predict Zy = (Z(s01), - - -, Z(Sok)) from the predictive density
function, defined by

P(ZolZobs) /Q P(Zo, 1lZ05s) 11
— /Q P(Zo|1, Zots)P(1|Zobs) I,

where Q = RP x (0,00)% x © x A.
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Notation: Fora = (ay,..., an), we write

9,(a@) = (gx(a1), .- gx(an))-
The Likelihood:

\II&O)_; exp {—ZC)} i,

L(1; Zobs) = (2:)2 5

Q= (g}\(zobs) — Xﬁ)' w;b (g)\(zobs) - Xﬂ) :

X n x p design matrix, Xj = fi(s;).
Vg = Xg + &l nx nmatrix.

z9/] = KO(siasj)'

I identity matrix.

I =TI+ 19'(zi obs)|, the Jacobian.
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The Prior

Insightful arguments in Box and Cox(1964), De Oliveira,
Kedem, Short (1997), as well as practical experience lead us to

the prior
p(&)P(8)p(A)
TJf

where p(¢), p(@) and p(\) are the prior marginals of £, 6 and A,
respectively, which are assumed to be proper.

p(n) o

Unusual prior: it depends on the data through the Jacobian.

For more on prior selection see Berger, De Oliveira, Sansé
(2001).
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Simplifying assumption: No measurement noise (£ = 0).

I\(Ziobs) = gr(Z(si)), i=1,...,n,

p(6)p(A)
TJf\J/n

n=(87.0,1)"

p(B’T79,A)O(

Also, write
Z = Zpps
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The Posterior

p(n(z) = p(8,7,0,A|z) = p(B,7(0, A, z)p(6, A|2).
To get the first factor:

X))

=)

.1
(BI7,0,1,2) ~ Np(Bg ,, —(X'Eg
n— p

(710, )\, 2) ~ Ga( 2
"3,
where
Bo., = XE,'X)"'X'E, g, (2)
Gp., = (9,(2) — XBg ) Eg'(g,(2) — XBg,,)-
and we get Normal-Gamma:
p(B,716,.2) = p(B|r,0,,2)p(7]0, A, Z)
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To get the second factor:
p(0,\[z) o
_ o _ L—1=pP q_P
Zol XY XI 712G, F Uy p(0)p(N)

In addition to the joint posterior distribution p(n|z) derived
above, the predictive density p(z,|z) also requires p(z,|n, z).
We have

k
T _
p(zoln.2) = (5 /2Dyl /2 ] [ 164(Z4)]
j=1

xexp {~2(9,(z0) - Mg 9,)'Dg'(9,(2) ~ Mg}

where Mﬂ 9> Dg are known.
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We now have the integrand p(z,|n, z)p(n|z) needed for p(z,|2).
By integrating out 8 and = we obtain the simplified form of the
predictive density:

p(zol2) = //pzole)\ p(6,\|z)dod\

Ix Jo P(20]6. X\, 2)P(2|0, \)p(8)p(\)dOAN
Ti Jo (216, \)p(6)p(X)dOdA
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where

BT 194 (207)]
)7k/2]Gg ,Cgl'/2

2
T,O
+(g,(20) —mg,) (g ,Cg) "
(Zo) —mg ) E

p(zo|07>"z) = ((
x([1

x(g

and from Bayes theorem,
._n=p
p(zl0,2) o |Zg| EX'E Y X|"V2g, 2 U,

where mg ,,Cg are known.
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BTG Algorithm: Predictive Density Approximation

@ 1. LetS= {zc(,j) :j=1,...,r} be the set of values obtained
by discretizing the effective range of Z;.

@ 2. Generate independently 64, ...,0,i.i.d. ~ p(8) and
My ooy Am i ~ p(A).

@ 3. For z, € S, the approximation to p(z,|2) is given by

5 S p(20]6, Ais2)p(2]65, \))
Z,|2) =
Bm(z0[2) ST p(zl6; )
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p(2]0, A, z) and p(z|6, \) given above.
The point predictor is the median of the estimated predictive

distribution: A
(x) £y = Median of (£|Z)
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tkbtg Interface Layout

Software: tkbtg application. Hybrid of C++, Tcl/Tk, and
FORTRAN 77 (Bindel et al (1997)).
www.math.umd.edu/-bnk/btg_page.html
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Spatial Prediction

TKETG

ampute
/home2 /bnk /btg_data/darwin.dat!

ing at (8, 52
26,1778
{19.3723, 32.9834)

ing Monte Carle error at (6, 53 ...
approximation error: 0.000547211

urrent data file: /fhome?2/bnk/btg_data/darwin. dati

L range: ©.453686 to 11,3032

¢ range: 0.771728 to 10,7497

I range: 17.72 to 68,25

tange of zo: (0.1 to [100 ; mesh size of [1000
iample size: |500

.ambda range: [-3 to [3

lorrelation <~ Exponential # Matern -~ Raticnal quadratic -~ Spherica’
rend order ® 0w 1w 2
Open data | Update settings
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Spatial Prediction BTG

Example: Spatial Rainfall Prediction

Rain gauge positions and weekly rainfall totals in mm, Darwin,
Australia, 1991.

~
S
29.92 236
°
S
21.7
17.72
31.14
w
68.25 26.83 18.24 28.98
631 24.47
> © - 46.06 23.60
66.76 33.68 1931
22.82
<
54.35 30.57
26.76
1.27
~ 33.98 3
29.55 41.85
°
0 2 4 6 8 10 12
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Spatial Prediction BTG

1. Use the Box-Cox transformation family.

2. A\ ~ Unif(-3,3).

3. m=500.

4. Correlation: Matérn and exponential.

5. No covariate information. Assume constant  regression:
E{gx(Z(s))} = b1-

6. Data apparently not normal.

0.04

Mean=33.94
Median=29.73
SD=15.06

0.03

0.02

0.01

10 20 30 40 50 60 70
Total Rainfall in mm
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Results of Cross Validation From 23 Observations

No. =z 2 95% PI

29.55 | 33.74 | (10.70, 56.78
41.85 | 34.32 | (15.29, 53.35
26.76 | 36.71 | (20.93, 52.49
33.98 | 33.39 | (18.49, 48.29
31.27 | 32.99 | (9.53, 56.45)
54.35 | 39.13 | (16.46, 61.79)
30.57 | 24.45 | (15.40, 33.59)
22.82 | 23.09 | (11.52, 34.66)
66.76 | 64.12 | (28.25, 100)
33.68 | 35.16 | (18.01, 52.30)
19.31 | 24.51 | (15.62, 33.40)
23.69 | 26.45 | (15.35, 37.54)

—
COWONOOUTANWN-=|O

—_
N —
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Spatial Prediction BTG

No. =z 2 95% PI
13 [ 63.10 | 72.07 | (44.14, 100)
14 | 46.06 | 40.60 | (18.58, 62.63)
15 | 24.47 | 22.32 | (14.00, 30.63)
16 | 28.98 | 21.62 | (13.43, 29.81)
17 | 68.25 | 46.54 | (19.25, 73.84)
18 | 26.83 | 29.52 | (16.57, 42.46)
19 | 18.24 | 19.00 | (10.79, 27.21)
( )
( )
( )
( )
( )

20 | 31.14 | 37.36 | (20.33, 54.39
21| 21.70 | 22.97 | (14.71, 31.22
22 | 17.72 | 22.69 | (11.64, 33.74
23 | 29.92 | 26.56 | (12.21, 40.91
24 | 23.60 | 21.83 | (10.85, 32.81
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Spatial prediction and contour maps from the Darwin data

Bayesian Spatial Prediction: BTG

f <




Ordinary Kriging

Spatial Prediction BTG

Spatial prediction and contour maps from the Darwin data
using exponential correlation.
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Ordinary Kriging
BTG

Predictive densities, 95% PI’s, and cross-validation: Predicting
a true value from the remaining 23 observations using Matérn
correlation. The vertical line marks true values.

p(x)

p(x)

I
p}
5]
=]
<
S
<
=
S

=
S

0.04 008 0.12

0.0

N
=
<}
@
True: 41.85 2 True: 63.10
Median: 34.31 = Median: 70.76
(15.60, 53.02) =1 (4152, 100)
g
S}
S}
0 20 40 60 80 100 0 20 40 60 80 100
X X
o
P
)
©
True: 28.98 2 True: 21.70
Median: 22.1 = Median: 23.05
(13.26, 30.94) =S (14.84, 31.26)
3
S}
; o
S}
0 20 40 60 80 100 0 20 40 60 80 100
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BTG vs Kriging and Trans-Gaussian kriging
(Kozintseva (1999)).

@ Cross validation results using artificial data on 50 x 50 grid.
@ Data obtained by transforming a Gaussian (0,1) RF using
inverse Box-Cox transformation.
@ In Kriging and TG kriging A, 8, were known. Not in BTG (!)
@ )\ =0: Log-Normal.
A =1: Normal.
A = 0.5: Between Normal and Log-Normal.
@ In most cases BTG has more reliable but larger prediction
intervals.
@ BTG predicts at the original scale. TG kriging does not.
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Matérn(1,10)

A 0 0.5 1
KRG MSE | 68397.48 7.15 0.58
TGK MSE | 55260.90 7.08 0.58
BTG MSE | 64134.30 7.31 0.56
KRG AvePlI 2.42 251 242
TGK AvePI 291.80 8.21 242
BTG AvePlI 330.68 10.23 2.87
KRG % out 100%  48% 6%
TGK % out 18% 8% 6%
BTG % out 12% 6% 6%
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Spatial Prediction BTG

Exponential(e=%03, 1)

A 0 05 1
KRG MSE 12212.32 1.83 0.13
TGK MSE 11974.73 1.84 0.13
BTG MSE 12520.70 1.89 0.14
KRG AvePI 145 143 1.45
TGK AvePlI 267.92 5.24 1.45
BTG AvePI 466.69 6.10 1.63
KRG % out 98% 64% 2%
TGK % out 20% 4% 2%
BTG % out 6% 2% 2%

Benjamin Kedem Bayesian Spatial Prediction: BTG
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Application of BTG to Time Series Prediction.

@ Short time series observed irregularly.

@ Set: s =(x,y) = (t,0).

@ Can predict/interpolate as in state space prediction:
k—step prediction forward, backward, and “in the middle”.

@ Example 1: Monthly data of unemployed women 20 years
of age and older, 1997-2000. Data source: Bureau of
Labor Statistics. N = 48.

@ Example 2: Monthly airline passenger data, 1949—1960.
Data source: Box-Jenkins (1976). Use only N = 36 out of
144 observations, t = 51, ..., 86.

Benjamin Kedem Bayesian Spatial Prediction: BTG
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Example: Prediction of Monthly number of

unemployed women (Age > 20), 1997-2000. Data in
hundreds of thousands.

Cross validation and 95% PI’s. Observations at times

t = 12,13, 36 are outside their 95% PlI's. N =48 — 1 = 47.

Unemployed Women 1997--2000

Unemployed Women

True
Predicted
el

-~ Upper

t
Benjamin Kedem Bayesian Spatial Prediction: BTG
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Spatial Prediction BTG

Forward and backward one and two step prediction in the

unemployed women series. In 2-step higrher dispersion.
One step forward wo step forward

(=] o
N N
o 5]
S True: 18.34 £ True: 18.34
(<] Median: 21.78 [} Median: 22.20
17.24, 26.33 16.36, 28.05,
29 ( ) ) £ 3 (16.36, )
a o a o
wn wn
o o
= =
o =3
o o
10 20 30 40 50 10 20 30 40 50
X X
One step backward Two step backward
o o
N N
e True: 28.98 ° True: 28.98
ol Median: 26.17 v Median: 24.69
a (21.94, 30.40) a (19.77, 29.61)
z S S
R-ps g o
wn wn
o o
= =
o o N
o o
10 20 30 40 50 10 20 30 40 50
X X
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Spatial Prediction BTG

Example: Prediction of No. of Airline Passengers.

Time series of monthly international airline passengers in
thousands, January 1949-December 1960. N=144. Seasonal
time series.

600

500

300

200

100
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BTG cross validation and prediction intervals for the monthly
airline passengers series, t = 51, ..., 86, using Matérn
correlation. Observations at t = 62,63 are outside the PI.

N =236 —-1=35.

s
8
g

True
Predicted
-- Lower

== Upper

2
3
8

No. Passengers
300

250

200

150
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Application to Rainfall: Heuristic Argument (Kedem
and Chiu, PNAS, 1987.)

Let X, represent the area average rain rate over a region such
that

Xn:an_1+)\+€n’ n:172,3,"',

where the noise {¢,} is a martingale difference. It can be
argued that for

Xn — LogNormal, n — oo,

weneed m— 1~ and A — Ot.
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The monotone increase in M (Curve a) and the monotone
decrease in A (Curve b) as a function of the square root of the
area. Source: Kedem and Chiu(1987).

Pixel size, km
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This suggests that the lognormal distribution as a model for
averages or rainfall amounts over large areas or long periods.

Benjamin Kedem Bayesian Spatial Prediction: BTG
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It is interesting to obtain the posterior p(\ | z) of A, the
transformation parameter in the Box-Cox family, given the data,
where the data are weekly rainfall totals from Darwin, Australia.

With a uniform prior for \, the medians of p(\ | z) in 5 different
weeks are:

Week 1 median = — 0.45 (to the left of 0).
Week 2 median = 0.45 (to the right of 0).
Week 3 median = 0.15 (Not far from 0).
Week 4 median = 0.20 (Not far from 0).
Week 5 median = 0.95 (Close to 1).

Benjamin Kedem Bayesian Spatial Prediction: BTG



Weekly posterior p(X | z) of A given rainfall totals from Darwin,
Australia, for 5 diffgrent weeks.

20

Spatial Prediction

Ordinary Kriging
BTG
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