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The first part of the dissertation concerns financial volatility models. Financial
volatility has some stylized facts, such as excess kurtosis, volatility clustering and
leverage effects. A good volatility model should be able to capture all these stylized
facts. Among the volatility models, ARCH, GARCH, EGARCH and stochastic
volatility models are the most important. We propose a generalized volatility model
or GVM in this part, which is a generalization of all the ARCH family and stochastic
volatility models. The GVM adopts the structure of the generalized linear model
(GLM). GLM was originally intended for independent data. However, using partial
likelihood, GLM can be extended to time series, and can then be applied to predict
financial volatility. Interestingly, the family of ARCH models are special cases of
GVM. Also, any covariates can be added easily to a GVM model. As an example,
we use GVM to predict the realized volatility. Because of the availability of high
frequency data in today’s market, we can calculate realized volatility directly. We
compare the prediction results of GVM with that of other classical models. By the

measure of mean square error, GVM is the best among these the models.



The second part of this dissertation is about value at risk (VaR). The most
common methods to compute VaR are GARCH, historical simulation, and extreme
value theory. A new semiparametric model based on density ratio is developed in
Chapter three. By assuming that the density of the return series is an exponen-
tial function times the density of another reference return series, we can derive the
density function of the portfolio’s distribution. Then, we can compute the corre-
sponding quantile or the VaR. We ran a monte carlo simulation to compare the
semiparametric model and the traditional VaR models under many different sce-
narios. In several cases, the semiparametric model performs quite satisfactorily.
Furthermore, when applied to real data, the semiparametric model performs best

among all the considered models using the metric of failure rate.
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Chapter 1
An Overview of Volatility Models

1.1 Introduction

Volatility means variance conditional on underlying financial assets, such as ex-
change rates and stock returns. Volatility modeling has been a very active area of
research in recent years when it became clear that volatility drives financial markets.
A volatility model should be able to forecast volatility. The forecasted volatility of
financial returns is routinely used as a simple measure of risk, and it enters directly
into derivative pricing formulas such as the Black-Scholes formula. Furthermore,
these forecasts are also used in risk management such as the calculation of value
at risk, derivative pricing and hedging, portfolio selection and many other financial
activities. There are a huge number of research papers on volatility models. In
this chapter, we focus on univariate volatility models. In this section, we introduce
model notation. In the second section, some stylized facts of financial volatility are
described. A good volatility model should be able to capture all these characteristics
of financial volatility. In section three, we review the family of ARCH models, and

section four is an introduction to stochastic volatility models.

Next, we establish our notation. Let P, be the asset price at time t. The



log-return is defined as:

P P, — Pt—l)
ry — In =In(l4+ ——- 1.1
' (&J ( Py (L)
P—Pi
P

The quantity B wran is called relative return, if the relative return is small, by Taylor

series expansion we can argue that:

_P-P
P,

T
Therefore, log-returns correspond approximately to percentage changes of a financial
position, a fact convenient in data analysis. Log-returns are often preferred to
relative returns because the multiperiod log-return is simply the sum of the involved
one-period log-returns, a property relative returns do not share. In addition, log-
returns have more attractive statistical properties. In the rest of the dissertation,

when we talk about the return series we mean the log-return series. We define the

conditional mean and conditional variance as:
my = Et—l[rt] (].2)
ht = Et_l[(rt — mt)2] (].3)
where F;_i[u] is the conditional expectation of some variable u given past infor-
mation F;_;. Without loss of generality this suggests that the return series r; is
generated according to the following process:
Ty = Ms + Qy (].4)
a; = \/Etet (15)

where E;_1[e)] = 0 and V;_y[e;] = 1, h; and ¢, are independent. Hence, given F; 1,

we can see that m; is ‘known’ and the volatility of r; is given in terms of the shock



term h;. All the volatility models in this chapter are concerned with the modeling

of a;, or in other words, h; and e;.

1.2 Stylized facts about volatility in financial time series

A special feature of financial volatility is that it is not directly observed but can
be estimated. In this dissertation, we use high frequency intraday data to calcu-
late approximate volatility. This enables us to measure the performance of different
volatility models. We'll discuss the details in later chapters. Although volatility is
not observed directly, some stylized facts about it are widely documented. These
empirical findings stem from financial time series such as the exchange rate returns
or stock returns. A reliable volatility model should be able to capture and reflect
the following stylized facts.

i. Excess Kurtosis.

Kurtosis is defined as the standardized 4th moment of the distribution. When
the unconditional distribution of financial time series is compared to the normal
distribution, fatter tails are observed. The kurtosis of the standard normal distri-
bution is 3, whereas for many financial time series, the typical kurtosis estimates
range from 4 to 50, indicating extreme non-normality (Mandelbrot (1963) [34], Fama
(1963,1965) [16] [17], Engle and Pattern (2001) [15] ).

ii. Volatility Clustering.

Volatility clustering refers to the fact that large changes of financial returns
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Figure 1.1: DJIA return

tend to follow large changes, whereas small changes tend to follow small changes.
To illustrate this, figure 1.1 is a plot of Dow Jones Index log-returns from Jan 01,
2001 to September 2003. Volatility clustering is quite clear in the figure. For ex-
ample, the changes of the returns of the few days around September 11, 2001 are
much larger than the changes before that. Volatility clustering is an indication of
persistence of shocks ¢ in (1.5).

iii. Leverage Effects.

Leverage effects refer to the phenomenon that the fluctuation of asset prices
or returns tend to be negatively correlated with the changes of volatility. In other
words, the volatility of the assets is affected asymmetrically by positive and nega-
tive innovations. The changes of volatility tend to be large if the changes of returns
are negative. On the other hand, the changes of volatility tend to be small if the
changes of return are positive. Many empirical works such as Black (1976) [2] ,

Nelson (1991) [37], Engle and Ng (1993) [14] all find evidence of leverage effects.



iv. Co-movements in volatility

When we look at financial time series across different markets, for example the
exchange rate returns of different currencies or the stock returns from the same in-
dustry, we can often observe a joint variation or fluctuation of the time series. Such
evidence has been found by Engle, Ng and Rothschild (1990) [13], Engle, Ito and Lin
(1990) [10] among others. In addition to the co-movements in volatility of time se-
ries, some exogenous variables may also influence volatility. For example, Anderson
and Bollerslev (1998) [4] find evidence that the volatility of the deutsch mark-dollar
exchange rate increases when the US macroeconomic data are announced. Easley
and O’Hara (1992) [8] find that the volatility of the US stock market is related to the
trading volume, quote arrivals, forecastable events such as dividend announcements,

and market closures.

1.3 ARCH and GARCH models

Following the structure of equation (1.5), we begin to talk about modeling the
volatility term h;. The seminal work of volatility modeling is the ARCH model of
Engle (1982) [9]. ARCH means autoregressive conditional heteroscedasticity. The
importance of the ARCH model is that it provides a systematic framework for

volatility modeling.



The simplest ARCH(1) is as the following:

Ty = My + Gy (16)
a;y = \/f_LtEt (17)

hy = g + aqal (1.8)

where as mentioned in (1.3), r; is the log-return series, m; = E;_1[r;] is the condi-
tional expectation of r, given past information, ¢; is assumed to follow the standard
normal or standardized Student-t distribution with mean 0 and variance 1. As for
my, we use a simple autoregressive model to model r; in this dissertation. We can

also include the volatility term h; in the mean equation as the following:

Ty =+ vhi—1 +ay (1.9)

my = p+ vhi_1 (1.10)

This model is called garch-in-mean model developed by Engle, Lilien and Robins
(1987) [11]. However, we will not talk about this model in this dissertation. Our
focus in this chapter is about volatility only. Our goal in the dissertation is to model
hi. We have described the ARCH(1) model in (1.8). In the general linear ARCH(q)
model, the conditional variance is assumed to be a function of the past q squared

innovations,

q
hy=ao+ Y quia;_; (1.11)
i=1

For this model to be well defined with positive conditional variance, the parameters

must satisfy ag > 0 and o; > 0,7 = 1, ...... q. Defining v; = a? — h;, the ARCH(q)



model may be re-written as

q
2 2
a; = o+ E o;a;_; + Ut

i=1
So the ARCH(q) model corresponds directly to an AR(q) model for the squared
innovations a?. The process is covariance stationary if and only if the sum of the
positive autoregressive parameters is less than one, in which case the unconditional

variance equals Var(a;) = . Therefore, we require
t —a )

l—ay—...... q

The GARCH model introduced by Bollerslev (1986) [3] is a generalization of

the ARCH model. The GARCH(p,q) model is defined by the equation:

q p
ht =y + Z Oﬁ,‘a?_i + Z tht—j (112)
=1

j=1
where p > 0,¢ > 0,09 > 0,0, > 0,0 =1, ...... q,3:;>0,i=1,..... p.

In a GARCH model, an autoregressive term of the volatility is added. So, the
GARCH formulation provides added flexibility over the linear ARCH models for
parameterizing the conditional variance.

The advantages of ARCH and GARCH models are that they capture the
features of fat tails and volatility clustering. The volatility clustering is due to
the past a; terms included in the model. As for the excess kurtosis, consider the
ARCH(1) model as an example. It can be shown that the unconditional 4th moment
my = F(a}) of ARCH(1) is:

3ad(1+ ay)
(1—a1)(1—3a?)

my =

7



So, the unconditional kurtosis of a; is:

Ba) _,1-0f

[Var(a)]? - 1 -3a2 >3

The weaknesses of ARCH and GARCH models is also clear:
1. They can not capture the leverage effects due to the positive and negative shocks
that have the same effects on volatility.
2. They put restrictions on the parameters a; and ;.

3. They do not capture the co-movements of volatility time series.

To overcome the drawbacks of the ARCH model, Nelson (1991) [37] introduced
the Exponential GARCH (EGARCH) model. The simplest EGARCH model can be

written as:
ln(ht) = + 0675 + ')/[|€t‘ — E(|6t|)] + Bln(ht_l) (].].3)

A more general EGARCH(p,q) model can be written as:

1+X7, BB’

In(h,) = .

(€1-1) (1.14)

where B is the lag operator such that Bg(e;) = g(e;—1), and g(e;,_1) allows for the
asymmetric effects between positive and negative asset returns. The function g(e€;)

is defined by:

9(&) = e +7ler| — E(le)], (1.15)

where 6 and 7y are real constants. E(|e]|) is the expectation of |¢;|. When ¢; follows

the standard normal distribution, E(|e;|) = 1/2/7; when ¢ follows the standardized



Student-t distribution with n degrees of freedom, we have:

2y =3 ((n + 1)/2)
~ (n=1C(n/2)y7

The advantages of the EGARCH model when compared with the GARCH

E(le)

model are:

1. The conditional variance of EGARCH is constrained to be non negative by
the logarithmic assumption of the volatility term h;, without the restrictions on
parameters in the GARCH model.

2. EGARCH allows for the leverage effects in the model. Positive and negative

returns have asymmetric effect on the volatility term. If we rewrite g(¢;) as:

@ +v)e—vE(lel)]  : e¢>0
g(er) =
(0 —v)er — vE(led])] <0

we can see this property from the expression of g(e;).

In addition to GARCH and EGARCH models, there are many other ARCH
formulations with similar properties. See Bera, Lee and Higgins (1990) [31], Zakoian
(1994) [51] and Taylor (1986) [44]. In the next section, we discuss another extension

of ARCH called stochastic volatility model.

1.4 Discrete time Stochastic Volatility Model

Stochastic volatility (SV) models treat the volatility term h; as a stochastic process
with an additional noise term other than ¢;. In this section we discuss only the
discrete time formulation of stochastic volatility. The continuous time version is

9



described in Hull and White (1987) [23]. Continuous time stochastic volatility leads

to generalizations of the well known Black-Scholes model.

The simplest discrete time stochastic volatility model [44] can be written as:

a, = \Jheey (1.16)

In(he) = a+ Bln(hi—1) +m (1.17)

where ¢;, the same as in the ARCH model, is assumed to follow the standard nor-
mal or the standardized student-t distribution with mean 0 and variance 1, and 7,
follows an assumed distribution with mean 0 and variance 072]. €; and 7, are assumed
to be independent. In other words, in this simplest SV model, In(h;) follows an
AR(1) process. It’s easy to generalize this model and In(h;) may follow many other

stochastic processes.

We now describe some properties of the SV model. If 7, is Gaussian and
|| < 1, then In(h;) is a standard Gaussian autoregression with the mean and

variance given by:

Q

pn = E(In(hy)) =

. (1.18)

B

g,
1- 3

IS )

op = Var(In(hy)) = (1.19)

If ¢; is Gaussian, the kurtosis of a; is 360’21, which is greater than 3. So the SV model
also inherits the fat tail property of ARCH families. The asymmetric behavior in as-

set returns can also be captured in SV models by letting Cov(e;, 7;) be negative. By

10



adding some exogenous variables in equation (1.17), the co-movements of volatility

can also be captured easily.

All these are advantages of SV models. In addition, SV models can capture all
the stylized facts we mentioned earlier. The weakness of SV models is the difficulty
we encounter in the estimation of parameters. Unlike ARCH or GARCH models,
we cannot use the usual maximum likelihood estimation or ordinary least square
methods in the estimation of the SV model parameters because of the innovation
of n; . Some feasible methods of estimation in SV models are Kalman Filtering
(Nelson (1991) [37], Nelson and Foster (1994)) [38], Generalized Method of Moments
(GMM), Quasi maximum Likelihood (QML), Markov Chain Monte Carlo (MCMC)
(Shepard (1996) [43] ), etc. But different algorithms may produce very different

estimates and standard errors can be very large (Mahieu and Schotman (1998) [33]

).

11



Chapter 2
Generalized Volatility Models (GVM)

2.1 Basic idea of generalized volatility model

The structure of this chapter is organized as follows. The first section is a brief in-
troduction of the generalized volatility model. In the 2nd Section, we introduce the
theoretical framework of the generalized volatility model (GVM). Section 3 provides
two examples of applying this model to forecasting 20 day standard deviation. Sec-

tion 4 applies GVM to forecasting realized volatility. The last section is a conclusion.

Before we talk about the generalized volatility model, let’s go over the basic
ARCH family models and stochastic volatility models. We use the same notation
as in Chapter 1. Let r; be a time series of interest; in this dissertation r; is the
log-return series of some financial asset. Let F;_; be the information set at ¢ — 1.

As in equation (1.5), r; = my + a; = my + V' hee, in all the volatility models.

As we mentioned in equation (1.11), the ARCH(q) model is defined by:

q
hy=ao+ Y quia;_; (2.1)

i=1
where ag > 0,0, > 0,0 =1, ...... q.

A generalization of this is the GARCH(p,q) model in equation (1.12) where

12



h; has the form:

q p
hy = ap + Z aga;_; + Z Bihi (2.2)
=1 =

7=1

where p > 0,9 > 0,00 > 0,0, > 0,2 =1, ...... q,5;>0,i=1,.... D

From Chapter 1, we know that a sensible volatility model should be able to
capture the stylized facts of financial volatility described in Section 1.2. The advan-
tages of ARCH and GARCH models are that they can capture excess kurtosis and
volatility clustering. But they cannot capture the leverage effects and co-movements
in volatility. And both ARCH and GARCH models have a lot of restrictions on the
parameters o, 3;. To capture the leverage effects, Nelson (1991) [37] proposes an Ex-
ponential GARCH (EGARCH) model. As in Section 1.4, an EGARCH(p,q) model

1.14 can be written as:

1+2% ,B,B
In(hy) = g + - 2,:1 ozZBi g(€er—1)

(2.3)
where B is the lag operator such that Bg(e;) = g(€;—1). The function g(e;) allows for
the asymmetric effects between positive and negative asset returns, and is defined
by:

g9(e) = Oer +7[ler] — E([e])], (2.4)
where 6 and «y are real constants. E(|e]) is the expectation of |e.
The EGARCH model overcomes some drawbacks of the GARCH model, but it does

not consider the co-movements of financial volatility and the fact that some exoge-

nous variable may have impacts on volatility.

13



An alternative volatility model is the stochastic volatility model. This model
considers the volatility term h; itself also as a stochastic process. The simplest

discrete time stochastic volatility model 1.17 (Taylor (1986) [44]) can be written as:
ln(ht) =o+ ﬁln(ht_l) + (25)

Adding the innovation 7, increases the flexibility of the model. We can extend the
model easily to capture all the stylized facts of volatility in section 1.2. And this
model can be generalized to a continuous time model. But because this model uses
two innovations ¢; and 7, the estimation of the parameters of the model becomes

quite difficult.

The goal of the generalized volatility model is to find an underling model to
generalize both the SV and ARCH models. Ludger Hentschel’s work (JFE, 1995,
[32]) was the first try to nest all the ARCH models in one model. He proposed the

following parametric model:

m? -1 w3 -1
e = w al () + (2.6)

where f(e;) = |e; — b] — c(e; — b). For example, when A = =2, b =¢ =0, it
corresponds to the GARCH model, when A =0, =1, b = 0, it corresponds to the
EGARCH model.

In this chapter, I propose a generalized volatility model, more general than
Ludger’s model. To define the generalized volatility model, we define the past

information set F;_; formally next. Let

Zt - (Ztla ...... ,Zt’p)l,



be the p-dimensional vector of past explanatory variables or covariates, t =1,..., N
corresponding to h;. We denote by F;_; the o-field generated by

ht—la ht_Q, ey T4 1,424 +ouy Zt—l: Zt_Q, cees

Fioq = U{ht—la ht—2, s Tt 15 T2y ey L1, Ly, }

Then we can define the generalized volatility model, GVM as

Ty =My + ay (2.7)
a; = \/h76t (2.8)
g(Et—l[ht]) = Z;—IB (2-9)

Where E;_1[h;] = E[h|F;_1], the lefthand side of equation (2.9) is a function of the
conditional expectation of the volatility term h; given the past information F;_;, the
righthand side is a linear form of the past information, and 3 is a constant coefficient
vector. Notice that the right hand of ARCH family models are determined if F;_; is
given. In other words, in ARCH family models E;_1[h;] = h;. So, in this way ARCH-
like models are a special case of our generalized volatility model. For example,
ARCH: g is the identity function, Z; = (1,a; 1)

GARCH: g is the identity function, Z; = (1,a;_1, ht 1)

EGARCH: g is the logarithmic function, Z, = (1, e;_1, |es—1| — E(|ec—1]), In(he_y))
Ludger’s Model: ¢ is the box-cox transformation function of v/hy,

h/%-1
Z, = (1,036 (1), =)
In addition, GVM has some of the advantages of the stochastic volatility mod-

els. We consider the volatility process itself to be a stochastic process determined
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by related covariate information. However, to avoid the estimation difficulty en-
countered in stochastic volatility, we do not add another innovation term 7, in the
model. All the covariates Z; _; in GVM are determined when F;_; is given. Then we
can use partial likelihood maximization method to estimate the GVM parameters
in (2.9) (Kedem and Fokianos (2002), [30]). Using this method we get an estimate
of B in (2.9), and apply the theory of generalized linear models to volatility series.

Therefore, we can get an estimate of the volatility E;_1h;.

2.2 Theoretical framework of generalized volatility models (GVM)

The theoretical framework of generalized linear models (GLM) was developed by
Nelder and Wedderburn (1972) [36], and it provides under some conditions a unified
regression theory suitable for continuous, categorical, and count data. The theory of
GLM was originally intended for independent data, but Kedem and Fokianos (2002)
[30] extended GLM to dependent data, specifically time series data. In this section
we apply GLM to financial volatility time series. We call it generalized volatility

model (GVM).

2.2.1 Notation of GVM and some properties of exponential family of
distributions

Let us denote by

vy = Elhy|Fia] = B[l
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the conditional expectation of the volatility given the past. An important property

of v; is that:

Elv] = E[E[h|Fi-1]] = E[hy]

Our idea is to estimate v, and use it as a prediction of h;. The problem is how to
relate v; to the covariates. In the GVM, we assume that the conditional distribution
of h; given the past belongs to the exponential family of distributions in natural or

canonical form. That is, for t =1,..., N,

htﬁt — b(et)

 (hes 1, $1F1-1) = exp{ ==

+ c(hi; 9)} (2.10)

The parametric function oy (¢) is of the form ¢/w;, where ¢ is a dispersion parameter,
and w; is a known parameter.

For ¢t =1, ..., N, we assume there is a monotone function ¢(.) such that

9(w) == BiZ1-1); = Zy_1B (2.11)

=1

From g(v.(0)) = n:(0), we can get

0 =v"" (g™ (m),

We denote

u()=v g™ ()

Many probability density functions belong to the exponential family. If the
probability density function is from the normal distribution with parameters v; and

s?, for t =1, ..., N, then
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htvt — 'Ut2/2
52

f(hy; 0y, 0| Fi—1) = exp{ — (h?/s* +1og2ms?) 2}

From which we see that v; = 6, b(6;) = 6?/2, and ¢ = s*>. The canonical link is the

identity function,
g(ve) = v = Zy 43

The distribution of an exponential family has some very good properties. Since for
everyt =1,..., N,

[ 06, 6|F)dn =1

Differentiation of both sides of the above equation with respect to 6; yields

h—0(0), ~
/(—at(qﬁ) ) f(h; 64, | Fr—1)dh = 0, (2.12)

which implies the conditional mean
Vy = E[ht|'7:t—l] = bl(et)
By further differentiation of equation (2.12) we obtain the variance:

Var[hy|Fi—1] = ()" (6,)

2.2.2 Partial Likelihood Inference of GVM

The likelihood is defined as the joint distribution of the data as a function of the
unknown parameters. When the data are independent or the dependence in the data
is limited, we can maximize the likelihood to infer the unknown parameters. But

for time series, the data are dependent. The likelihood is much more complicated
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than that of independent data. Consider a time series Y;,t = 1, ..., N with a joint

density of fy(yi, ..., yn) parameterized by a vector 6. Then the likelihood of Y} is

N
Jo(yr, - yn) = fo(yn) 1:[ foelyr, - yi—1) (2.13)

If we have time series Y; and covariate process Zg, the joint distribution of them
would be very complicated. The partial likelihood idea of Cox (1975) [6] is that
we take only part of the likelihood for inference about the unknown parameters.
Suppose we have a time series Y; and a covariate vector process Z;, then the partial

likelihood of the observed series (Kedem and Fokianos (2002) [30]) is

PL(IB) = H f(y; 0y, ¢|—7:t—1)

t=1

We have two time series Y; and Z; (covariate process) but we only consider the
conditional likelihood of one time series given the other. Under the GVM structure,

the log-partial likelihood [(3) is given by

Z{h,:u Z, 1[3Lt(¢)( u(zy_18)) +e(he, 0)} (2.14)

We shall use the notation

o 0 0
0py" 0B 9B,

\Y

( )

When we take the first derivative of the log-partial likelihood function with respect

to the vector of the unknown parameters 8, we get the partial score

N 3vt ht —Ut(ﬂ))
Sn(B) = EZt Yo Var[hy| Fo_i]

The solution of the score equation,

Sn(B) = VI(5) =0

19



is denoted by B, and is referred to as the maximal partial likelihood estimator
(MPLE) of 8. Some standard numerical algorithms such as fisher scoring method
can be used to solve the above score equation. Under certain regularity assumption,
3 has some asymptotical properties (Kedem and Fokianos (2002) [30]).

1. B is a consistent estimator of 8, and B is asymptotically normally distributed.

That means,

in probability, and
VN(B = B) = Ny(0,G7H(8B)),
in distribution, as N — oco. where G() is a certain positive definite matrix.

2. The following holds in probability, as N — oc:

VN(@B - B) - %G_l(ﬁ)sN(ﬁ) -0,

2.2.3 Deviance Analysis

The concept of deviance is used in the diagnostics process of the GVM. Let f(hy;0)
(2.10) be the density function of the observation h; given the parameter 6, v; be
the expectation of hy, vy = Elhy|F;_1], then the log partial likelihood (2.14) can be

written as

I(vih) = 3 In f(h;0)
where v = (vq, vg, ...... ,un). As a measure of goodness-of-fit criterion, we can define
scaled deviance as:

D =2i(h;h) — 2/(v;h) (2.15)
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A useful result of D is in the hypothesis testing of the goodness-of-fit of fitted
model. Let D, be the scaled deviance corresponding to Hy : B = B,, and D; to
H, : B = B,, where 8, is a p-dimensional vector and 3, is a subvector of B,with

dimension ¢, ¢ < p. Then for large N, if ¢ is known, under H,,
Dy — Dy ~ X}Q)—q

If ¢ is unknown, we can use an alternative statistic for testing Hj, that is,

(Do — D1)/(p—q)
Dy/(N —p)

~ FpgN—p (2.16)

2.2.4 Box-Cox Transformation and the Link Function in GVM

Let’s review our generalized volatility model (2.9):

9(Ei1[h]) = Z;_1B (2.17)

In GVM, we estimate E;_i[h;], the conditional expectation of h;. We assume that h;
are from an exponential family. In the empirical work of this dissertation, generally,
the h; are dependent and non-Gaussian. To simplify the computation procedure of
parameter estimation, we apply a box-cox transformation to h; and transform them
to a normal random variable coordinatewise. And for the normally distributed h;,
we can use the identical link function in the parameter estimation process. Then we
can get an estimate of F;_1[h;]. The box-cox transformation process is described in

the following paragraphs.
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Suppose hq, hs, ..., h, are positive historical volatility series. Assume for \ €

(=3,3),i=1,...,n,

h)—
T A0
W; =
Inh; : A=0

are normally distributed with mean p and constant variance o2, w; ~ N(u,0?). So
w; series are the ‘new’ observations, \, i1, 02 are unknown parameters. Box and Cox
(1964) estimate the parameters by the maximum likelihood method. Assume g(h)

is the distribution of h;, f,(w) is the distribution of w;. Then,

dw

9(h) = fu(w(h) = = fulw(h))h*

We can get the log likelihood function /() given by:

n

I(A)=C=n/2In6*(N) + (A = 1) 3 _In(hy)

where, 5%()\) is given by:

Therefore, we only need to maximize the log likelihood function I(\), we can get an
estimate of the parameter )\, then we can apply the GVM to the ‘new’ transformed
observation series w. In our empirical work in this dissertation, under many cases,

the value of A is very close to zero.
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2.3 Two examples of GVM to forecast sample standard deviation

2.3.1 GVM to predict the sample standard deviation for the Dow
Jones Industrial Index returns

In this section, we emphasize our methodology and do not strive to obtain the best
model. The in-sample data we use are the daily return series of Dow Jones Industrial
Average (DJIA) and Nasdaq Index from January 1st, 2001 to September 23rd, 2003.
the out-of-sample data are 10 days after the above period. The financial volatility
series are unobservable. We simply use the 20-day sample standard deviation of
the return of DJIA as a measure of its volatility /A; term to show how the GVM
model can be applied. We want to predict the 20-day standard deviation of DJIA
returns and use the Nasdaq returns data as the covariate data. In this section, the
term ‘volatility’ means the 20-day standard deviation series v/h;. In the next section
we will give a formal definition of ‘realized volatility’ and apply GVM to forecast
realized volatility.

First, Let’s have a look at the time series plot of the above two in-sample
stock indices in Figure 2.1. From the graph, roughly, we can see that the Dow Jones
and Nasdaq indices are related to each other as they co-move. For example, when
the Dow Jones index is high, Nasdaq is also high, when the Dow is low, Nasdaq is
also low. Our interest is to predict the volatility of the Dow Jones index. A natural
thought is to include the data of Nasdaq as a covariate when we predict the volatility

of Dow Jones index. Next, let’s formalize our model. Let r; be the log-return series
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of DJIA, the plot of the return of the DJIA is Figure 2.2. We want to predict the
volatility of DJIA returns. Our idea is to apply the generalized volatility model to
the prediction. So the volatility or the standard deviation of DJIA return using the
above definition is the response of the model. In the GVM, we should assume the
distribution of the response process. A Gaussian assumption is a natural idea. So
next let’s check the normal probability plot of the volatility.

The graph in Figure 2.3 gives a normal probability plot for graphical normality
testing. The plot has the sample data displayed with the plot symbol '+’. Super-
imposed on the plot is a line joining the first and third quartiles of each column of
data (a robust linear fit of the sample order statistics). This line is extrapolated out
to the ends of the sample to help evaluate the linearity of the data. If the volatility
comes from the normal distribution, the plot should appear linear. But from this
figure, it’s far away from the straight line. We can’t assume that our volatility data
are normally distributed. The plot and histogram of volatility are attached as Fig-

ure 2.5, and Figure 2.6.

We now check the norm plot of the logarithm of volatility. The plot is shown
in Figure 2.4. It’s not exactly linear, but quite close to the straight line. So, in this
example we shall assume that volatility is log normally distributed. In fact, we can
apply the Box-Cox transformation method to the DJIA volatility series to validate
this assumption. The graph of the log-likelihood function (2.2.4) is in Figure 2.7.
The best A is -0.45, which is not far from zero. We may assume the log-data come
from the normal distribution. The histogram of log(volatility) is attached as Figure
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2.8, and it appears reasonably symmetric.

In this section, we consider the following GVM of the data. Assume y, is the
logarithm of volatility of DJIA at time t, then y; = In(v/h), 2 is the logarithm of

the volatility of the Nasdaq index at time t.

v = Elln(\/h)|Fia] = C + ayp 1 + 0 + 724

After we estimate the parameters of the model using partial likelihood maximization,

the model is given by:
vy = —0.078 +0.99 X y; 1 +2.54 x 77, — 0.01 X z_;

Finally, we use this model to predict 13 days out-of-sample volatility and get Figure
2.9 of the prediction. In the figure, the dashed line represents the real data, the solid
line represents the predicted value and the error bar is the 99% confidence interval.
From the picture, we can see that 6 times out of 13 predictions are close to or are
within the 99% confidence interval, 4 of them are close to the 99% confidence inter-
val, 3 of them are far beyond the 99% confidence interval. Notice that the coefficient
of the covariate z;_; is very small if we compare it with the other coefficients. We
can do a deviance analysis about z;_;. Consider the hypothesis Hy: the model with
z;_1 as a covariate, and H;: the model without z;_; as a covariate. We can calculate
the statistic %, by (2.16), the statistic follows F,,_, n_, distribution. The
statistic for this example is 0.1941 with p-value 0.3403. So we reject the hypothesis
H,. The impact of z; is very small in this model. Since A in the box-cox transfor-
mation is close to zero, we also did a Box-Cox transformation for the same DJIA
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data to predict the standard deviation. The two plots of the prediction are attached
as Figure 2.10. The results of the prediction are very similar. It is reasonable to do
just a log-transform for the data.

Dow And Nasdaq Index
12000

,,

£
AP |
8000 - f \Jluqhwﬁq\\w
4000 L‘ «{
R A

0 . :
01-Jan-2001 29-Nov-2001 27-Ocl-2002 24-Sep-2003

Figure 2.1: Dow Jones (upper curve) and Nasdaq (lower curve) Index
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Figure 2.3: Normplot of the volatility data /h;
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Figure 2.5: 20-day standard deviation of DJIA return v/h,
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Figure 2.6: Histogram of DJIA volatility v/h,
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Figure 2.7: Log-likelihood Function of DJIA volatility /A,
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Figure 2.8: Histogram of Ln(volatility), In(v/h;)
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Figure 2.9: Out of Sample Prediction for DJIA +/h;, both predicted data and real

volatility data /h; are after log-transform
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Figure 2.10: Comparison of the Out of Sample Prediction for DJIA +/h;, upper

curve for Box-Cox transformation, lower curve for log-transformation

2.3.2 GVM to predict IBM stock return standard deviation

We follow the same procedure to predict IBM volatility (20-day standard deviation)
using Microsoft stock price return as a covariate. Figure 2.14 gives the IBM sam-
ple standard deviation from February, 2000 to September, 2003. Figure 2.15 shows
the Microsoft volatility during the same period. Economically we know that both
IBM and Microsoft are IT giants. From the two plots, we can also see that the
two volatility series have something in common. Generally, during the same time
period, when the IBM volatility is high, that of Microsoft is also high, and vice
versa. That’s why we use Microsoft as a covariate to predict the IBM volatility.

Assume as above. log-IBM volatility is normally distributed. The histogram and
qqplot of log(IBMvolatility) are attached. We can also apply the Box-Cox transfor-

mation method to the IBM volatility series. The value of A is 0.089, also close to 0.
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The graph of the log-likelihood function (2.2.4) is in Figure 2.11.

So these two examples show that it is reasonable to log-transform the data.
Assume g, is the logarithm of volatility of IBM at time t, then y, = log(h;) and r;
is the return of IBM at time ¢, z; is the logarithm of volatility of Microsoft at time
t, m; is the return of Microsoft at time ¢.

In this section, we consider the following model:

vy = Elln(hy)|Fioi] = a0 + gy + 0427"?_1 + asyi1 +agmyq + Oé5m?_1 + Q21

Using partial likelihood maximization, we get the estimates of the parameters

of this model:
vy = —0.13 — 0.087,_y + 24.1177 | + 0.95y; 1 — 0.03my_1 + 1.71m]_; + 0.022;_,

Asin Section 3.1, we use this model to predict 10 days out-of-sample volatilities
and get figure 2.16 about the prediction. In this figure, the stars represent the real
data, the solid line represents the predicted value and the error bar is the 99%
confidence bounds. For these data, 9 out of 10 of the real data are within the 99%

prediction errorbars, quite satisfactory.

32



i)

Figure 2.11: Log-likelihood Function of IBM volatility

Figure 2.12: Histogram of log-IBM volatility In(y/h;)
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2.4 GVM to forecast realized volatility

2.4.1 Realized Volatility

In this section, we apply GVM to forecasting realized volatility. Volatility can not
be observed directly. In the above section, we use 20-day sample standard deviation
of returns as a measure of volatility. But how to choose the observation frequency
is a big problem. When the sample standard deviation is calculated using a large
number of observations, some stylized facts of volatility such as volatility clustering
and leverage effects tend to disappear. When the sample standard deviation is
calculated using a small number of observations, it’s subject to large error.

Realized volatility is another method to measure volatility. It can be constructed
by summing up intraday squared returns. Assuming that a day is divided into N
equidistant periods, let p;; denote the logarithmic price at time 7 at day ¢, if r;,

denotes the intradaily return of the i*" interval of day ¢, then r;; is defined by:

Tig = Dit — Pi—1,t = log(pricei’t) - log(pricei—l,t)

The daily volatility for day ¢ can be written as:

N 2 N N N
[Z Ti,tl = Z TiQ,t + 2 Z Z TiaTj—it (2.18)
=1 =1

i=1 j=i+1

If we assume the 7;; have mean zero and are uncorrelated, SV | r7, is a consistent

and unbiased estimator of the daily variance h, (ABDL, 1999, [1]). >X, 7% is

consistent because of the following argument. We assume the instantaneous returns
are generated by

dpy = 0 dW,, (2.19)
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where p, is the logarithmic price at time ¢, dW), ; is a standard wiener process. Since
one period return (here is one day) ri 1 = pii1 — py, from 2.19, the conditional vari-
ance of r, would be [} 02, dr. And by the theory of quadratic variation (Karatzas

and Shreve (1998) [27]),

1
p lim /0t+7d7' Zr” (2.20)

When the intraday data are available, r; ; are observed. So N t is called realized

=173,
volatility.

If we sum sufficiently many r%t, we can get an error free measure of the daily
volatility. However, if we choose a very high sampling frequency shorter than 5
minutes, this measure is plagued by a bias caused by various market microstructure
effects which include bid-ask bounce, price discreteness, or nonsynchronous trading.
[1] propose the use of 5-minute returns to calculate realized volatility. In this chapter,
we also use this sampling frequency. Now we have the observed realized volatility
as a measure of the latent volatility. We can use traditional time series models
such as ARIMA models to forecast the realized volatility. But those models don’t
consider the stylized facts of the financial volatility. And we can also use the ARCH
family models to forecast it. But the conventional ARCH models mainly use the
information from the daily return series. They don’t make full use of the availability
of the high frequency data and the past realized volatility series. The GVM models
can fill these gaps very well. They give the flexibility of adding covariates in the

model and at the same time they keep the main structure of ARCH family models

so that they can capture the stylized facts of financial volatility. In the next section,
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we apply AR(3), GARCH(1,1) and EGARCH models to forecast IBM stock return
realized volatility. In the third section, we apply GVM to predict IBM realized

volatility and compare it with the results of the previous section.

2.4.2 Traditional time series models and GARCH models to forecast
realized volatility

The data we use in this chapter are daily IBM return series and IBM realized
volatility series from January 2002 to December 2003. We separate the data into
two parts. The data from January 2002 to September 2003 are the in-sample data,
from October 2003 to December 2003 are the out-of-sample data. We use the in-
sample data to fit the models, predict the realized volatility during the out-of-sample
period and compare it with the out-of-sample realized volatility. The graphs of the

data are in the Figures 2.17 and 2.18 and some statistics of the in-sample data are

in Table 2.1
IBM mean variance | skewness | kurtosis
returns —7.26 x 107* | 5.23 x 1074 0.23 6.26
realized volatility | 2.36 x 107 | 7.41 x 10~° 1.58 8.85

Table 2.1: IBM statistics

From both data sets, the kurtosis are much great than 3, the kurtosis of the
standard normal distribution. This means the distribution of IBM return has fatter
tail than that of normal. The unconditional mean of the return series is —7.26x 104,

To fit a GARCH or EGARCH model, we need to get an error series with mean 0.
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We fit the return series with an AR(2) model empirically,
ry = —0.00079 — 0.00247r;_1 + 0.022r;_5 + a4

Then we fit the GARCH(1,1) and EGARCH(1,0) models to the a; series. The

GARCH(1,1) model is given by:

ar = Vhey (2.21)

hi = g + aqa; | + Bhyy (2.22)

With the different assumptions of ¢;, the GARCH(1,1) model parameters are given
in Table 2.2.
The GARCH model cannot capture the leverage effect. So we also fit the data

to the simplest EGARCH(1,0) model. EGARCH(1,0) model has the form:
Inhy = ap+ e 1 +aq 1|+ Flnhy (2.23)
After we fit the in-sample data, we get the estimated EGARCH model:
Inh; = —=7.57—0.17€¢;_1 — 0.17 |e,_1| + 0.751n hy_4 (2.24)

The family of ARCH models was built without the concept of realized volatil-
ity. So when we fit the GARCH(1,1) and EGARCH models, we only need the
daily return series to fit the models. The first few volatility data we simply use the
squared return data as a substitute. The ARCH family models don’t make use of
the information in realized volatility. Since we want to predict the out-of-sample

realized volatility, it is natural to compare these models with the traditional ARMA
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model of realized volatility series. By checking the PACF of IBM realized volatility

series, we fit the IBM realized volatility series with the AR(3) model.

RV, =6.3x 107" +0.36 RV;_1 + 0.14RV,_5 + 0.23RV;_3 + 1, (2.25)

where RV represents IBM realized volatility.

When we get the parameters of the corresponding GARCH(1,1), EGARCH
and AR(3) models, we can apply them to forecast the out-of-sample realized volatil-
ity using the in-sample data. The mean square errors of predicted volatility from
the above models and the true realized volatility are listed in table 2.3. The MSE
is listed in 1,5,10,15,20 days period.

From the Table 2.3, we can see that for the IBM data, the traditional AR(3)
is better than the GARCH and EGARCH models from the point of view of MSE.
That’s because the GARCH and EGARCH don’t make use of the historical realized
volatility series. For the GARCH model, if we assume the error terms have a student

t distribution, the MSE is a little smaller than that of normal errors.

€ o) ay B

Standard Normal | 8.14 x 107° | 0.20 | 0.65

Student T(5.34) | 7.99 x 1075 | 0.19 | 0.67

Table 2.2: IBM GARCH(1,1)
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Figure 2.17: IBM return series
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Figure 2.18: IBM realized volatility
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MSE(in days) 1 5 10 15 20

GARCH1,x107" 0.6012 | 0.1686 | 0.1090 | 0.1300 | 0.1083

Normal errors

GARCH2,x107" 0.5817 | 0.1679 | 0.1089 | 0.1263 | 0.1053

Student t(5.3) errors

EGARCH, x10~7 | 0.2882 | 0.1698 | 0.1436 | 0.1498 | 0.1272

AR(3), x1077 0.1535 | 0.0711 | 0.0537 | 0.0546 | 0.0456

Table 2.3: MSE comparison with true realized volatility

2.4.3 GVM to forecast realized volatility

In this section, we use the same IBM data as in previous and we apply GVM to
predict the out-of-sample realized volatility. To apply GVM, we need to assume the
in-sample volatility series are from a certain exponential family. We can have a look
at the histogram of logarithm of IBM realized volatility series in Figure 2.19 and
its qgplot in Figure 2.20. From the two figures, we can see that the distribution
of logarithmic volatility series can be assumed normal. We can also use the box-
cox transformation method to the IBM volatility series. The value of A is -0.1246
also close to 0. The graph of the log-likelihood function 2.2.4 is in Figure 2.23.
So, we assume the IBM volatility series follow the lognormal distribution. In the
application, we apply GVM to the logarithmic volatility series and use the canonical
link of normal distribution (identity link) to estimate the parameters in the model.
We take a similar structure as in EGARCH model and add a covariate term. To

find a good covariate series, we check the graph of trading volume of IBM stock
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return and its realized volatility from January 2002 to September 2003. The graph
is in Figure 2.21. They are very closely related to each other. We can compute the
correlation coefficient, it is 0.71. So for IBM data, its trading volume seems a very

good covariate. The GVM can be written as:

E[ln(ht”ft_l] =g+ €1 + Qg |6t_1| + Bln ht—l + ’YVOLUMEt_l (2.26)

The GVM we fit is the following:

Inh, = —3.77 — 0.0145¢;_1 + 0.0274 |¢;_1| + 0.5606 In by — 0.5387VOL;_,

where VOL means the trading volume of IBM stock, in unit of one million shares.
The standard error of the GVM parameters are in the table 2.4. The effect of the
covariate the trading volume is obvious. After we estimate the parameters of GVM,
we can also apply it to predict out-of-sample volatility. The graph of the predicted
volatility and true volatility is in Figure 2.22. We also compute the MSE of the
predicted series and true series in 1,5,10,15,20 days. The results are in the Table 2.5

Comparing this table with Table 2.3, we can see that the MSE of GVM are
much smaller than that of all the other models. GVM improves greatly the predic-

tion of realized volatilities as judged by the mean square error measure.

We follow the same procedure and comparison for the EXXON and COKE
stock returns series. First we get a return series and use an AR(2) model to get
its errors. For the errors series, we use GARCH(1,1) models with normal noise and
student t noise, egarch to predict the volatility. For the realized volatility series,
we use AR(2) and our GVM models to predict the volatility. We can also use the
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box-cox transformation method to the EXXON and COKE volatility series. The
value of A for EXXON is 0.55, that of COCA COLA is 0.87, in between 0 and 1.
The graphs of the log-likelihood function 2.2.4 are in Figure 2.24 and Figure 2.25.
We compare the mean square errors of all these volatility forecasting models
for 1,5,10,15,20 days using the out-of-sample data. The in-sample and out-of-sample
periods are the same as that of IBM data. In-sample period is from January 2002
to September 2003. Out-of-sample period is from October 2003 to December 2003.
The models and MSE are in Table 2.6, 2.8, 2.9, 2.10. For the EXXON stock return

series, we fit an AR(2) model by:

ry = —0.00022 — 0.117;_; — 0.0257y_9 + a4

Then we fit the in-sample error series a; and realized volatility series as in Table
2.6. The mean square errors are in Table 2.8

For the Coca cola stock return series, we fit an AR(2) model by:

ry = —0.00017 — 0.0527r,_1 — 0.082r,_9 + a;

Then we fit the in-sample error series a; and realized volatility series as in Table 2.9.
The mean square errors are in the table 2.10. From both MSE tables of EXXON
and COKE models, the MSE of GVM are obviously smaller than that of the other
models. We also attach the figures of the predicted volatility using GVM and the

realized volatility in Figure 2.26 and 2.27.
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Figure 2.19: Histogram of logarithm of IBM realized volatility series

QQ plot of In(IBM volatility) versus standard notmal

-75 ._‘z'
-8}

-8.51

Quantiles of Input Sample

-4 -3 -2 -1 0 1 2 3 4
Standard Mormal Quantiles

Figure 2.20: QQplot of logarithm of IBM realized volatility series

GVM Parameters -3.7702 | -0.0145 | 0.0274 | 0.5606 | 0.5387

Standard Errors for GVM Parameters | 0.4820 | 0.0097 | 0.0175 | 0.0533 | 0.5596

Table 2.4: IBM models, Standard Errors for GVM Parameters
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Figure 2.21: IBM realized volatility versus its trading volume

w107t GVM to predlct out of— sample realized \I'O|Eltl|ll)"
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——— |BM realized volatility
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Figure 2.22: TBM realized volatility versus predicted volatility

Model 1 3 10 15 20

GVM x1078 | 0.1752 | 0.1100 | 0.1220 | 0.1235 | 0.1345

Table 2.5: GVM MSE comparison with true realized volatility
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Log-likelihood of Box-Cox transformation of IBM realized volatility
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Figure 2.23: Log-likelihood Function of IBM realized volatility

Log-likelihood of Box-Cox transformation of EXXON realized volatility
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Figure 2.24: Log-likelihood Function of EXXON realized volatility
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Log-likelihood of Box-Cox transformation of Coke realized volatility
4300 T T T T T

4200

4100

4000

3900

lag-likelihood 1(k)

3800

3700

3600 - 4
)

Figure 2.25: Log-likelihood Function of Coca Cola realized volatility
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Figure 2.26: EXXON realized volatility versus predicted volatility
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Figure 2.27: Coca Cola realized volatility versus predicted volatility

Models

Formula

GARCH1

hy = 3.44 X 1076 + 0.093a2_, 4 0.89h,_,

GARCH2

hy =2.09 x 107° + 0.22a_; + 0.71h;—4

EGARCH

Inhy = —8.15 — 0.065¢,_; — 0.065 |e;_1| + 0.75In hy_;

AR(3)

RV, =7.63 x 1075 + 0.41RV;_1 +0.21RV, 5+ 0.16 RV;_3 + 1,

GVM

Inh; = —2.83 — 0.0090€¢;_1 + 0.12|¢;_1| + 0.66In hy_1 + 0.20VOL,_,

Table 2.6: EXXON models, GARCHI1 is with normal noise, GARCH2 is with

student-t distributed noise, VOL is the trading volume, in the unit of one million

shares.

GVM Parameters

-2.8316 | -0.0090 | 0.1154

0.6599

0.2012

Standard Errors for GVM Parameters

0.3482 | 0.0125 | 0.0189

0.0406

0.3636

Table 2.7: EXXON models, Standard Errors for GVM Parameters

49




MSE(in days) 1 5 10 15 20

GARCH1,x1077 0.7260 | 0.1548 | 0.0792 | 0.0533 | 0.0420

Normal errors

GARCH2,x107" 0.5377 | 0.1292 | 0.0660 | 0.0448 | 0.0439

Student t(10.2) errors

EGARCH, x1077 0.0811 | 0.0687 | 0.0612 | 0.0569 | 0.0612

AR(3), x1077 0.6217 | 0.3739 | 0.2060 | 0.1506 | 0.1200

GVM, %1077 0.0526 | 0.0284 | 0.0256 | 0.0252 | 0.0280

Table 2.8: MSE comparison with true realized volatility for EXXON return series

Models Formula

GARCHI | hy = 7.49 x 1075 +0.064a? | + 0.91h;_,

GARCH2 | hy = 1.48 x 107 + 0.17a2_, + 0.27h,_,

EGARCH | Inh; = —7.81 — 0.10,_; — 0.10 |e;_1| + 0.75In Ay,

AR(3) RV, =111 x 1074 + 0.32RV;_1 + 0.16 RV, 5 + 0.14RV;_3+ 1,

GVM Inhy = —3.69 — 0.0082¢;_1 + 0.092 |¢;_1| + 0.56 In hy 1 — 0.013VOL;_4

Table 2.9: Coca Cola realized volatility models, GARCH1 is with normal noise,
GARCH?2 is with student-t distributed noise, VOL is the trading volume, in the

unit of one million shares.
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MSE(in days) 1 5 10 15 20

GARCH1,x1077 0.3874 | 0.0966 | 0.0582 | 0.0404 | 0.0334
Normal errors

GARCH2,x107" 0.1125 | 0.1249 | 0.0950 | 0.0908 | 0.0798

Student t(4.95) errors

EGARCH, x10~7 0.2009 | 0.1313 | 0.1257 | 0.1192 | 0.1295
AR(3), x1077 0.4067 | 0.2210 | 0.1382 | 0.1149 | 0.0984
GVM,x10~7 0.0584 | 0.0394 | 0.0365 | 0.0363 | 0.0340

Table 2.10: MSE comparison with true realized volatility for Coca Cola return series

GVM Parameters

-3.69

-0.0082

0.092

0.56

-0.013

Standard Errors for GVM Parameters

0.4428

0.0165

0.0174

0.0386

0.5326

Table 2.11: Coca Cola stock return realized volatility models, Standard Errors for

GVM Parameters
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2.5 Conclusion

We suggest a new model using generalized linear models to predict financial volatil-
ities in this paper. What’s the advantage of this volatility model? We know that a
number of stylized facts about the volatility of financial asset prices emerged over
the years. These facts include: volatility clustering, mean-reverting, asymmetric
innovation impact, exogenous impact, heavy tail, forecast evaluation. As mentioned
in Engle and Pattern (2000) [15], a good volatility model must be able to capture
and reflect these stylized facts. Since we can include any covariates in our model, we
can reflect almost all the above stylized facts. For example, for volatility clustering,
we can use historical data as covariates similar to GARCH model. For asymmetric
innovation, we can do the same way as in regime-switching model, separate them
into several parts so that they would have different weights as covariates. Heavy
tails can be reflected from the assumption. And the other facts are quite obvious in
our model. Furthermore, because of the flexibility of GVM, we can also try GARMA

and binary models in the future research.

From the application part we can see that the prediction results are quite
acceptable. Compare the mean square error of GVM and the other traditional
models, the mean square error of GVM is the smallest. It is interesting to notice
that when we use GVM to predict realized volatility there is a gap between the
predicted volatility and true volatility. The predicted realized volatility are always

higher the realized volatility. A possible reason is that the realized volatility in this
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dissertation is computed by the summation of 5-minute return variance. The exact
realized volatility should be the sum of instantaneous variance. Therefore, a gap can
be expected. The exact realized volatility should be a little larger than 5-minute

sum. And the predicted realized volatility are closer to the exact realized volatility.

There are many open questions in this field. For example, in the GVM model,
we need to assume the time series is from some specific distribution and then choose a
link function, is the assumption of the distribution good? Can we try other links? In
fact, using the data of this paper we also try the link function of gamma distribution
and inverse Gaussian distribution. Unfortunately, the residuals’ square errors are
extremely large. How to choose the link function, how to choose the appropriate
covariates and how to do the goodness of fit of the models are all very interesting
and important problems. And for financial time series, the macroeconomic news
announcements have a big impact on volatility. Can we put this kind of news in our
model and how? In this chapter, we do not aim to obtain the best model. How to
obtain the best model from the measure of mean square error? And another future
direction is about the option pricing using the GVM. All these problems need deeper

research.
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Chapter 3
Value at Risk

3.1 Introduction

There are many sources of risk in financial markets including credit risk, operational
risk, liquidity risk, and market risk. These and other downturns may lead to the fur-
ther risk of panic reaction which can be harmful to both domestic and international
financial markets. Among these risks, market risk is tantamount to the uncertainty
of future earnings due to changes in market conditions such as changes in the rates
of interest, unemployment, or inflation. Value at Risk (VaR) is a probabilistic mea-
sure of financial risk often applied to assessing market risk, conditional on portfolio
holdings and historical market data. More precisely, VaR can be defined as the
maximal potential loss of a portfolio of financial instruments during a given time
period for a given probability. The review article by Duffie and Pan (1997) [7] and
the book by Jorion (2000) [25] provide a good introduction to this topic.

Let V; be the value of some financial portfolio at time ¢, and let AV;() be the
difference between the values at time ¢ and ¢ + [. Then the VaR of a long position

over the time horizon [ with probability p is given by

p = Pr{AVy(l) < VaR)] = F(VaR) (3.1)

where Fj(x) is the cumulative distribution function of AV;(l). Long position means

o4



owning some financial assets. Since the holder of a long position suffers a loss when
AVi(l) < 0, the VaR in (3.1) is negative when p is small. On the contrary, Short
position is a speculative action. The holder of a short position borrows a certain asset
and sells them in market in advance and will buy the asset back and return them
at a future time. So the holder of a short position suffers a loss when AVy(l) > 0.

We can define VaR of a short position by

p = Pr[AV,(l) > VaR)] (3.2)

and here VaR is positive when p is small.

The great popularity of VaR among practitioners is mainly due to its simplicity.
Using a single number we can assess a future financial loss with probability p over
a given time horizon. VaR is used pervasively by banks, including the World Bank
and the Bank for International Settlements, to make recommendation for capital
adequacy requirement based on VaR estimates [25]. That makes the estimation of
VaR very important to financial institutions.

The estimation of VaR is a challenging statistical problem which involves the
estimation of the quantiles of the distribution of a financial asset return. The esti-
mation methods of VaR can be classified into three broad categories: parametric,
nonparametric, and semiparametric. The parametric method generally consists of
two steps. First, the volatility of a portfolio is estimated using GARCH or IGARCH
models. Then VaR is estimated from the estimated volatility and an assumed dis-
tribution of the return process [3],[7],]9], [35]. The typical nonparametric method

entails historical simulation. We’ll discuss those most used VaR methods in more
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details in the next section.

Another useful quantity is log-return defined as

ry = ln(PIZI) (3.3)

where P, and P,_; are the values of the assets at times ¢ and ¢t — 1. There are
several reasons for the use of log-returns. First, we see from (3.1) and (3.2) that
value changes of assets can be written in terms of the returns of the assets. Second,
log-returns correspond approximately to percentage changes of a financial position,
a fact convenient in data analysis. Third, the return of an asset is a complete and
scale-free summary of an investment. Fourth, return series are easier to handle than
price series because the former has more attractive statistical properties. Finally,
there is an obvious connection between returns and VaR which itself may be viewed
as a percentage, a perspective taken in what follows. Thus, the dollar amount of
VaR is the cash value of the financial position times the VaR of the log-returns.

In this chapter we develop a new semiparametric method, based on a density
ratio model, to estimate VaR. No distributional assumptions are made. Yet, under
a certain “tilt” assumption we are able to determine an optimal distribution of
the return process directly and from this estimate the corresponding VaR. The
semiparametric VaR estimate is then compared via a simulation with traditional
VaR estimates obtained from historical records and from a GARCH model and
other methods.

The rest of the paper is organized as follows. Section 3.2 describes the VaR

methodologies. We classify the existing VaR models into three categories: paramet-
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ric, nonparametric and semiparametric. And we briefly introduce most commonly
used models in these categories. Section 3.3 describes briefly our semiparametric
methodology, and in Section 3.4 we discuss its implementation and comparison with
other methods using a simulation. In the last section, we briefly summarize the

main results of the paper.

3.2 VaR Methodologies

For the existing models to calculate VaR, they all have a general framework. First
step is to estimate the distribution of portfolio returns. Then we can get the quan-
tile of the distribution and therefore get the VaR of the portfolio. The difference
between these models is how to estimate the distribution. We mentioned in the
first section, we can classify the existing models into three categories: parametric,
nonparametric and semiparametric models. We’ll briefly talk about the most com-
monly used models in this section. Among these models: parametric models include
Riskmetrics, GARCH and GVM; nonparametric models include Historical simula-
tion and extensions of it; semiparametric models include Extreme Value Theory,

Quantile Regression.

3.2.1 Parametric Models

The models in this section such as RiskMetrics (1996), GARCH and GVM suggest
a specific parameterization for the volatility process and return series, from which

we can calculate value at risk. The structure is the same as in (1.5) and is given as
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follows:

Ty = My + a4 (34)

a; = Vhe (3.5)

Notice that m; is the conditional mean of r,. We assume that ¢; follows a certain
standard distribution such as normal or student-t distribution and we want to esti-
mate the quantile, or the VaR of r;. If we estimate m; and h; as m; and ﬁt, and if
we assume ¢ is the quantile of the distribution of ¢;, then the estimate of VaR can

be obtained from the following formula:
VaR = iy + Vi x ¢ (3.6)

We have described the GARCH and GVM in the first two chapters. The

simplest GARCH(1,1) model is given by 2.22:
ht = Qg+ alaf_l + ﬂlht—l (37)

where 7, is log-return series, m; is the conditional expectation of r;, a; is the noise
term, h; is the volatility equation, ¢; is standard residuals, we assume ¢, is identically
independent distributed with mean 0 and variance 1. This model has three crucial
elements:the specification of volatility equation h;, the mean equation m; which
can be specified by the general autoregressive model, and the standard residuals ;.
With the assumption ¢, from certain distribution we can use maximum likelihood to
estimate the parameters in the volatility equation A;. The most common assumption
is € is from standard normal or standard student-t distribution. Once we estimate
all the parameters in the equation, we can calculate it quantile or value at risk of
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the return series r; from the distribution. For example, if ¢; is from standard normal
distribution and we want to compute 5% quantile, it equals to m; plus -1.645 (the
5% quantile of standard normal distribution) times Vh:. For the GVM method, as
long as we can estimate the volatility process we can compute VaR by the same
method as in the GARCH method.

For the Riskmetrics, its origin is also from GARCH. In Riskmetrics, we as-
sume m; equals to zero and the volatility model follows an IGARCH model as the

following:

re = Vhe, (3.8)

hy =ary |+ (1 —a)h_, (3.9)

where a usually set to be 0.94 or 0.97 empirically. The advantage of Riskmetrics
is that it can compute multiperiod value at risk easily. Suppose 7;[k] is the log
return from time ¢ + 1 to ¢ + k, then r[k] = rppq + .o + rap1 + 1ok And k] =
Variance(rk]| F}) is the k period volatility.

Notice that from (3.9), we can get
ht = ht—l + (1 - Ck)ht_l((f?_l — ].)

for all ¢, so Ey_1(hy) = Ey_1(hy—1) = hy—1 and by induction we can get E;(h;;) =
hiq for i = 2,3, ..., k. We can derive that h]k| = Variance(rik]|F}) = khyr1. The
conditional variance of r;[k| is proportional to the time horizon k. Correspondingly,
if VaR is the daily value at risk, then the k-day value at risk would be vk x VaR.

Riskmetrics is simple and easy to apply. But it is based on the assumption that the
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mean equation is m; = 0. If this assumption is not true, then the multiperiod value
at risk formula is also wrong. And all these parametric models are subject to the
misspecification of the variance equation and the chosen distribution. How relevant
are these misspecification in the estimation of value at risk is mainly an empirical

1ssue.

3.2.2 Nonparametric Models

The most common nonparametric model to calculate VaR is Historical Simulation.
To apply the Historical Simulation, one needs to select a window of observations,
generally half year to two years. Then we sort the return series within this window
from lowest to highest. Then the #-th quantile is the fth return of the observation
to its left. For example, if we 1000 data ordered from smallest to largest, then the
5% quantile is the 50th smallest data. But this method has an implied assumption.
This method assumes implicitly that the distribution within the window and beyond
the window are the same. Logically we can say all the return series are from the
same distribution. This implicit assumption is not reasonable. The advantage of
Historical Simulation is its simplicity and it has no distribution assumption in the

model.

3.2.3 Semiparametric Model: Extreme Value Theory

Using extreme value theory to calculate VaR is classified as a semiparametric VaR

model. Extreme value theory is a classical topic in the statistical literature. Consider
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a return series {ry,...... ,Tnt , let M, = max{ry,...... JTnts My = min{ry, ... T}
Notice that M, = —min{—rq, ...... , —Tn}, so we only consider the distribution of the
minimum m,, in this section. Assume that the return series r; are from independent
identical distribution with a CDF F(z). If we denote the CDF of m, to be F(z),
then

F(z)=1-[1— F(z)]" (3.10)

Asn — oo, we can see that F'(z) becomes degenerate. It’s either 1 or 0. Therefore, in
EVT, we study the distribution of (m,,—a,) /b, instead of CDF of m,,. Here {a, } and
{b,} are two sequences with respect to n and a,, > 0. a,, is called location parameter,
b, is called scale parameter. By the theorem of Fisher and Tippett, if there exist
such a,,b, and some degenerate distribution H such that (m, — a,)/b, — H in

distribution. Then,

1—exp[—(1+kx)Y¥] © k#0
H = Hi(z) = (3.11)

1 —exp[—exp(z)] : k=0
where 1+ kz > 0. When k = 0, the special case Hy(z) = lim,_,q Hy(z). H is called
the generalized extreme value (GEV) distribution. It describes the limit distribu-
tion of normalized minimum (m, — a,)/b,. k is the crucial parameter in GEV. It
determines the shape of the GEV distribution, especially the tail behavior of the

limiting distribution. So k is referred to as the shape parameter. Genedenko (1943,

[45]) showed that the GEV consists of three types of limiting distribution.
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1. k£ =0, the Gumbel family. The CDF is:
Hi(z) =1 — exp[— exp(z)] (3.12)

2.k < 0, the Fréchet family. The CDF is:

— exp[— o)k < —
H,(@) = 1 p[—(1 + kx)'/*] < —1/k (313

1 : otherwise.

3. k > 0, the Weibull family. The CDF is:

1 —exp[—(1+kz)'*] + 2> -1/k
Hi(z) = (3.14)
0 : otherwise.
Among these distributions, the Fréchet family include stable and Student-t distribu-

tion. Gumbel family consists of normal and log-normal distribution. The probability

density function of the GEV distribution in (3.11) is given by:

(1 + kx)V*Lexp[—(1 4+ kz)*] :© k#0,1+ kx>0
hi(z) = (3.15)
explr —exp(z)] : k=0
Several methods are available to implement EVT. We apply a parametric
maximum likelihood method in this dissertation. Our purpose is to estimate the
location parameter a,, scale parameter b, and the shape parameter k. Since for
each sample data series there is only one sample minimum. To implement EVT by
MLE we need more sample minima. Therefore in the first step, we divide the whole
data set into some non overlapping subsamples. Then on each subsample, there
exist a sample minimum. For example, if there is a sample data series {r, ...... TN}
for simplicity we can assume that N = n % ¢. Then we can divide the data into

p subsamples and each subsample contains n data. Suppose m,,; is the subsample
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minimum, 7 = 1,...... ,q. If n is large enough, we assume EVT applies to each

subsample. From equation 3.15, we can get the distribution of z,, ;. That is,

B po (U k) Vo exp[— (1 + kaa) %] b # 0,14 kx>0 516
Mnp,i) = .
i exp[z; —exp(z;)] : k=0

where z; = (my,; — a,)/b,. In this way, we can construct the likelihood function for

each subsample minimum m,, ;.

And by the maximization of L, we can obtain the estimate of a,,,b,, k.

In the second step, through the generalized extreme value distribution, we can
get the corresponding value at risk for the subsample minimum. Let p* be a small
probability, 7* is the corresponding p-th quantile of the subsample minimum. Then

by the CDF of the generalized extreme value distribution, we have:

1 —exp[—(1+k(r* —a,)/b,)"*] :© k#0
p' = (3.17)

1 —exp[—exp(r* —a,)/b,] : k=0
We can obtain the p-th quantile of the subsample minimum by the above equation.

That is:

ap — 2 {1 = [=In(1-p")*} : E#0
rt = (3.18)
ap + by In[—In(1 —p*)] : k=0

In the third step, from a given small probability p* and quantile r* for the

subsample minimum, we can get the VaR for the whole data series. For a data
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series {r;}, using the relationship in (3.10), we can get:
pr=1—[1—P(r, <r)|"

If we set p = P(r; < r.), then p* =1 — (1 — p)™, by the equation 3.18, we can get

the VaR by the following expression:

tp — {1~ [-nln(1—p)JF} : k#0
VaR = "
ap + by, In[—nln(l —p)] : k=0
Similarly, for a short position with a small probability p, by the above para-

metric maximum likelihood method to implement EVT we can get VaR by:

ap + 21— [-nln(1 —p)[F} : E#0
VaR = " (3.19)

an + b, In[—nIn(l —p)] : k=0

3.3 A Density Ratio Model

The rest of this chapter are mainly from the working paper ” Time Series Prediction
via Density Ratio Modeling” (with Kedem B. and Gagnon R., [28]).

Our basic idea is that of a “reference” probability density and its “distortions”.
It is motivated from a well known fact regarding exponential families of probability
distributions.

For 8 = (6y,...,0;), let g(x,0) be the probability density of a k-parameter
exponential family,

k

g(x,0) = d(0)S(x)exp { ci(O)Ti(x)}

=1
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Then, with a = log[d(6,)/d(05)], B = (c1(01) — ¢1(62), ..., cx(01) — ¢x(02))’, and

h = (T\(x), ..., Tx(x))', we obtain the ratio

1 e ) e ) .

g1(x) = exp{a + B'h(x)}gs(x) (3.21)

Numerous well known parametric families including the normal, gamma, beta,
and Rayleigh, satisfy (3.20) [26]. In the normal case with mean p and variance o2,

0 = (u,0?), the density ratio (3.20) is obtained with

h(z) = (x,2%)

In the gamma case with shape r and scale A, @ = (r, \), the density ratio (3.20) is
obtained with

AT (r2)
AT (r1)

B = ()\2—>\1,7"1—7"2)/

a = log

h(z) = (z,logz)

And in the Rayleigh case with scalar parameter 6, 5 and h(z) in (3.20) are

scalars,

03
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1 1
202 207

h(z) = 2?

The tilt relationship (3.21) holds true for exponential families, but in general
it suggests a way to relate or regress probability densities. In applications we view

(3.21) as a plausible and sensible model.

3.3.1 A Density Ratio Model for Time Series

Consider now the following m = ¢ + 1 time series,

T = fi(zie-1) e, t=1,..,m
Tt = fq(zq,t—l) +eu, t=1,..,n,
Tt = fm(Zmg1) F e, t=1,.n0 (3.22)

where the vectors zj ;,_; contain past values of covariate time series possibly including
even past values of xy,..., 2, Tpe, and the €, are independent noise components
[30]. For the moment assume the f; are known. In applications, as demonstrated
in the last example, the f; are estimated and the ¢, are replaced by the residuals.
An important special case is m-dimensional autoregressive process with additive
independent noise and known coefficients. Suppose that for each ¢, €;; is distributed
according to an unknown probability density g;(z), j = 1,...,q¢, m. Define g(x) =
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gm(z) as the reference density. Then, emboldened by the density ratio model (3.20),
we shall assume that each g; satisfies (3.20) relative to g, or equivalently, with scalars

aj, p x 1 vectors B;, and a known p x 1 vector of real-valued functions h(x),

9i(x) = exp{a; + Bjh(z)}g(x), J=1,...q (3.23)

The objective is to estimate all the a;, 3;, the reference density g, and the corre-
sponding cdf G, for the purpose of predicting the future reference value x, +11, using

the combined “data” from all the m “samples”

T = {(elta seey 61711): teey (eqlv seey anq)7 (6m17 seey 6’mnm)} (324)

of length n = n; + ... + ng + ny. This is the same as estimating the «;, 8; and g,
conditional on some initial values if necessary, from the entire observed differenced

data set of size n = ny + - -+ + nyy,,

Tt — fl(zl,t—l)a t=1,...,m
Top — fo(Zgi-1), t=1,..,n4
Tt — fm(Zmi-1), =1,y (3.25)

This in particular means that g is estimated from all the observations and covariate
data and not just from “its own” time series (1, ..., Timn,,) Of length n, < n.

The exponential “tilt” relationships (3.23) relative to a reference or baseline
density g enable a semiparametric inference about the «;, 8;, and about g and the
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corresponding distribution function G, based on the combined data set consisting
of all the m time series and their covariate data. Using the estimator G of G we
can estimate future probabilities of events formulated in terms of the “reference”
T+ conditional on z,,,. Model (3.23) is a special case of weighted distributions

and biased sampling [39],[46],[47].

Example: Bivariate AR. The linear system

Ty = 1T4—1 + QY1 + €

Yt = b1 + boyr1 + (3.26)

t = 1,..., N, with independent Gaussian noise components ¢, ~ N(0,0?) and 7; ~

N(0, 03), satisfies the density ratio model. We have

= exp {log(02/01) + (1/203 — 1/207)2%} = o= (3.27)
orm=2,q=1, g1 =g, g = gy, and (3.23) reduces to

a+pBz?

g(z)=e gn(2) (3.28)

3.3.2 Semiparametric Estimation

The exponential “tilt” relationships (3.23) relative to a reference or baseline density
g enable a semiparametric inference about the «;, 8;, and about g and the corre-
sponding distribution function G, based on the combined dataset 7 consisting of all
the m datasets.

A maximum likelihood estimator of G(z) can be obtained by maximizing the
likelihood over the class of step cdf’s with jumps at the values 74, ..., 73, [20],[22],[41],[42].
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Let w;(1) = exp {ozj + ﬂ;h(T)}, j=1,...,q,and p; = dG(1;),i =1,..,n. Then

the likelihood becomes,

E(aa ﬂla sy IBqu G) -
TTp: T exples + B,h(ery)) - T explag + Bh(es))
i=1  j=1 j=1
= sz' H wl(elj) T H wq(eqj) (3-29)
i=1  j=1 j=1

When the data are dependent, (3.29) may be viewed as a partial likelihood discussed
in terms of time series in [30]. Fix a, B, ..., B,. Then maximizing (3.29) with respect

to the p; subject to the constraints

S =1 Yoplen(n) 1= 0, Y plwy(r) ~ 11 =0

i=1
we obtain [20],

1 1

bi=—

) 3.30
Ny 1+ prwi(7i) + -+ + pawe(Ti) (3:30)

where p; = nj/n,, j =1, ..., ¢q, are the relative series sizes. Substituting the p; in

(3.30) back into (3.29) gives the log-likelihood as a function of e, B4, ..., 8, only,

I=—nlogn, — Y log[l+ piwi(r)+--+ pawy(r;)]

+ i[al + Bih(e)] + -+ i[aq + B h(egs)] (3.31)

A~

By maximizing (3.31) with respect to v, B4, ..., B, we obtain the estimators &, ,31, s By

and by substitution,

1 1
pi=—" — — (3.32)
"m 1+ prexp(dr + B h(r;)) + -+ + pgexp(cay + B, h(7;))
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Therefore, with I(B) the indicator of the event B,

G(r) = Y pd(ri <7) (3.33)

1 & I(r; < 7)
- R ~ 1 R ~ 1
"m =11+ prexp(ar + By h(7;)) + - + pgexp(ay + B, h())

Asymptotic properties of G’, and its optimality over the empirical distribution func-
tion obtained only from the reference sample €., ..., €y, ignoring all the other
samples, are discussed in a sequence of papers by Zhang [48],[49],[50]. In particular,
it is shown in [50] that \/n(G — G) converges to a Gaussian process with mean zero

and a rather complex covariance structure under some assumptions. In addition, it

can be shown [20],[42],[48],

~ ~

Vi[(@, B, s B,) — (ch Bros s Big)] = N(0. 571V S (3.34)

where a, B9, -, B, are the true values of the parameters and S, V' are given in
the appendix. Here o = (o, ..., o).
Now, from G we can compute probabilities and quantiles as we demonstrate

next in relation to VaR estimation.

3.3.3 Prediction

Since Tymiv1 = fm(Zmi) + €mas1 and €41 ~ G, we have the useful probability
approximation at ¢t + 1 conditional on z,,,

P(xm,t—l—l <z | zm,t) = G(x - fm(zm,t))

~

Gz — fm(zm,t))

Q

= iﬁzf (1i <2 = fin(Zmz)) (3.35)

70



where we now replace the noise 7; by actual observations. Thus, for
1<r<m, 1<t<n,, ne=0, t1=n1+:--+n,._1+t

we have 7, = €,y = T — fr(zr,t—l)a and

1 1
h = — - _ _ 3.36
b N 14 pry (@ — fr(Zrg—1)) + -+ pgg(wre — fr(Zr4-1)) ( )

From (3.35) we can get the predicted values E(Zp 111 | Zmt)-

3.4 Simulations and Applications of Density Ratio Model to Value

at Risk

3.4.1 Simulations

To apply our method to the calculation of VaR, we need two or more datasets
of financial returns, considering one of the datasets as a “reference”. That is, it
corresponds to the reference probability density.

Consider now two financial series P, and P,. Then the corresponding returns

ry and 7; are relative changes defined as,

In(P,) = In(Py) + 1, (3.37)

In(P,) = In(P_y) + 7, (3.38)

When the temporal changes in the financial series are not large, a Taylor series
expansion to one term shows that the returns are really percentage changes. We

may view r; and 7; as the residuals (€’s) of two regression models. In accordance
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with the above discussion, if 7, has a reference probability density g(-), and r; has

density g(-), then we model the relationship between the densities by

g(x) = exp(a + B2%)g(x) (3.39)

Note the slight change in notation; here g(x) is the reference probability density.
The choice of h(z) = 22 is justified in light of the previous discussion, and by the
comparison results in the tables below.

Given data from r; and 7, an application of the semiparametric method yields
an estimate for g(z), from which we get the VaR (i.e. quantile) estimates of 7;
corresponding to fixed probabilities. From this, under additional assumptions, we
can also estimate the conditional predictive distribution of P,. But unlike before,
the main interest here is in VaR estimates for 7.

We compare our method with four other methods. The first is historical sim-
ulation, one of the most commonly used methods for VaR estimation. Suppose 6
is the given probability. We choose a window (or stretch) of observations, sort the
returns data from small to large, then the corresponding sample quantile is the VaR
estimate.

The second method estimates VaR using a GARCH(1,1) model (e.g. see [30,
p. 200] and references therein). Here it is assumed that 73| F;_; ~ N(0,02), where

o? is the conditional variance of r; satisfying,

0? =g+ a7t + Biot (3.40)

This assumption provides a method to determine both the estimated volatility series
and the quantile (or VaR) for a given probability. That is, the estimated VaR is the
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quantile of the standard normal distribution times the estimated standard deviation
at time ¢ calculated from (3.40).

The third method is Riskmetrics model, the structure of Riskmetrics is the
same as the above GARCH method. The only difference is the volatility equation

of h;. In Riskmetrics, h; is given by:

hy =ary |+ (1 —a)h_, (3.41)

In practice, we treat o = 0.94. Then, the estimated VaR is the quantile of the
standard normal distribution times the estimated standard deviation v/h;.

The last method is to use extreme value theory to predict VaR. We talk about
this method in detail in section 3.2.3.

In our simulation, we generate six different datasets. Each time, we apply the
five methods to calculate VaR for one set of data. The first three datasets are gener-
ated from the same GARCH(1,1) model with the different innovation term ¢;. The
dataset 7, = o€y, oy is in (3.40) with coefficients (ag, aq, £1) = (0.005,0.15,0.80).
Then three 7, = o0,€; reference series were generated similarly such that: a. ¢ fol-
lows the standard normal distribution and (ap, aq, £1) = (0.005,0.15,0.80). b. ¢
follows the standardized student-t with 3 degrees of freedom, mean 0 and variance
1, and (ayp, a1, f1) = (0.005,0.15,0.80). c. ¢ follows the standardized Gamma(4,2)
distribution with mean 0 and variance 1, and (ag, aq, £1) = (0.005,0.15,0.80). The
standardization is in accordance with the requirement that the error term of GARCH
models should have mean 0 and variance 1.

The fourth data set is generated from the above GARCH Gamma and GARCH
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T data sets with the same coefficients. We generate the data from GARCH Gamma
and GARCH T alternatively. In this way, we generate a non iid data set.

The fifth data set is generated from a TGARCH process and a standard nor-
mal distribution. TGARCH means threshold GARCH. In our TGARCH, o7 changes
according to a clipped € as in (3.43) below.

TGARCH can be defined as follows:

Tt = Ot (3.42)
Qg + ozﬁ“’f_l + ﬁ10'tz_1 o6 >0

o} = (3.43)
Qo+ ol + fiof, <0

In empirical work, threshold models correspond to ’leverage effect’. In our simula-
tion, oy = 0.005, B; = 0.80, a; = 0.05, ap, = 0.15. ¢ follows the standard Normal
distribution with mean 0 and variance 1.

Then the true quantile (VaR) from the 7 series is the standard deviation at
time ¢ obtained from (3.40) times the quantile of the corresponding error terms e
with the indicated probabilities.

The last data set is generated similarly to the fifth. It is generated from a
TGARCH process and a standardized Gamma(4,2) distribution with mean 0 and
variance 1 as in 3.43. The parameters in TGARCH process is the same as the fifth
data set. ag = 0.005, 51 = 0.80, a; = 0.05, ay = 0.15. ¢, follows the standardized
Gamma(4,2) distribution with mean 0 and variance 1.

The plots of the simulated data and their histograms are attached in figure
3.1 to figure 3.6. In each of the six cases the corresponding GARCH models were
used in generating 100 independent time series each of length 1001. The true VaR
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is obtained for ¢ = 1001. To apply the historical simulation method, we choose a
sliding window of 300. For the GARCH and semiparametric method, we use the
first 1000 data points. We would like to predict the VaR at day 1001 and compare
it with true VaR on day 1001.

Recall, in our semiparametric model, 7; is the reference return. We make the
“distorted” series r; a simulation of stock index, or in other words, a combination of
7¢ and some other securities. To generate the “distorted” series r;, we first generate
data y by a GARCH(1,1) process with parameters («yg, oy, 51) = (0.005,0.05,0.90)
times a process ¢; from the standard normal distribution. Then r; is generated
by r, = wy % 7, + wy * y, where wy, wy are the weights of 7, and y. We assume
wy + we = 1. This is a combination or a portfolio of two assets 7; and y. If w; is
large, it guarantees that 7; and r; are highly correlated. If w; is small, that means
r; and r; are weakly correlated. However, our model doesn’t require that 7, and r;
are dependent. So we generate four cases of r, with different weights: (a) w; = 0.8,
wy = 0.2; (b) wy = 0.2, wy = 0.8; (¢) wy = 0.03, wy =0.97; (d) wy =0, wy = 1;

We use two measures: mean square error (MSE), and failure rate to compare
the VaR estimates obtained from the three methods: semiparametric, historical
simulation, and GARCH. In the present simulation there are 100 runs and the MSE
is defined as

100
MSE = (> (EstimatedVaR — TrueVaR)?)/100 (3.44)

i=1
The MSE measure the deviation of the estimated VaR from the true VaR in

the simulation. The other measure is called failure rate or exceedance ratio (ER).
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It is a measure to check the adequacy of the models. Suppose p is the given small
probability, n is the length of the time series, m is the length of the data with
magnitude less than the VaR (if for the long position VaR is negative), if for the
short position, VaR is positive, m is the length of the data with magnitude great

than the VaR then ER is defined by

ER =m/n (3.45)

If the sample is large enough, ER is an unbiased estimate of p, and we expect ER
to be close to the given probability p. The closer to p, the better the model is.
Otherwise, the model is inadequate. In our simulation tables, we write 95%, 99%
to represent the short position. Under those two cases, ER should be close to small
probability 5% and 1%.

The results of MSE and ER under different scenarios are given in Tables 3.1
to 3.12. In all of these simulation tables, we write 95%, 99% to represent the short
position with small probability 5%, 1%. We use the notation DR to represent our
semiparametric method based on density ratio, HS to represent historical simulation,
GN to represent GARCH normal method, RM to represent Riskmetrics, EVT to
represent the extreme value theory method.

From the tables we can make the following conclusions. For the data generated
from the GARCH normal, table 3.1 and table 3.2 we see that the GARCH model
and RiskMetrics are the best two models in terms of MSE. But the density ratio
(DR) model is best in terms of exceedance ratio. For the data from TGARCH

normal, we have similar results. The GARCH model and RiskMetrics are the best
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two models in terms of MSE. But the density ratio (DR) model and historical
simulation model are the best two best in terms of exceedance ratio. For the data
generated from the t-GARCH, ¢(3), table 3.3 to table 3.4, GARCH is best by MSE,
whereas DR is best in terms of exceedance ratio. For the data generated from the
Gamma-GARCH, gamma(4,2), table 3.5 to table 3.6, these models perform quite
similar by all the measures. For the non iid data, from exceedance ratio, DR is
best, from MSE, GARCH is the best. For the data generated from the threshold
GARCH with ¢ ~ gamma(4,2), DR performs better than the other four models
by the measures exceedance ratio. From the MSE measure, all the models perform
quite similar. From all these simulation scenarios, the semiparametric density ratio
model performs quite well according to the measure of the exceedance ratio. Notice
that exceedance ratio checks the adequacy of the models. If that measure of the
model deviates the given probability too much, the model is not sensible. We can
say that our density ratio model is the most robust model. And this model preforms
much better in nonormal cases than in normal cases. Especially in the TGARCH-
Gamma, case, it performs best by both the measures of bias and exceedance ratio.
Considering that TGARCH-Gamma data has the features of heavy tail and leverage
effects, which are some stylized facts of financial volatility we mentioned in Chapter
1, we can expect the DR model also works well in the real financial world. We will

give an example of application of DR model in the next section.
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Simulated Normal distributed return data
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Figure 3.1: Simulated GARCH Normal returns

Simulated Gamma(4,2) distributed return data
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Histogram of Gamma(4,2) data

Figure 3.2: Simulated GARCH Gamma(4,2) returns

3.4.2 Applications

The previous section describes the simulation results. As an application, we apply
the semiparametric method to the IBM, EXXON and COCA stock price returns
individually, which are the reference series, and use the same Dow Jones Industrial
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Simulated Student T(3) distributed return data
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Figure 3.3: Simulated GARCH Student-t(3) returns

Simulated Noniid T(3) and Gamma(4,2) distributed return data
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Figure 3.4: Simulated Non iid returns
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Simulated TGARCH Normal distributed return data
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Figure 3.5: Simulated TGARCH Normal returns

Simulated TGARCH Gamma distributed return data
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Figure 3.6: Simulated TGARCH Gamma returns
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p

DR(a)

DR(b)

DR(c)

DR(d)

HS

GN

RM

EVT

1%
5%
95%

99%

MSE

MSE

MSE

MSE

0.1376

0.0296

0.0270

0.0790

0.1216

0.0286

0.0268

0.0808

0.1070

0.0291

0.0264

0.0818

0.1063

0.0293

0.0265

0.0819

0.1443

0.0330

0.0296

0.0970

0.0526

0.0144

0.0073

0.0467

0.0659

0.0219

0.0130

0.0660

0.0690

0.0219

0.0442

0.0917

Table 3.1: Normal case. MSE (3.44) measuring the distance between the true and

estimated VaR.

p

DR(a)

DR(b)

DR(c)

DR(d)

HS

GN

RM

EVT

1%
5%
95%

99%

ER

ER

ER

ER

0.0095

0.0501

0.0503

0.0095

0.0106

0.0507

0.0504

0.0106

0.0111

0.0499

0.0494

0.0112

0.0111

0.0496

0.0492

0.0113

0.0139

0.0524

0.0537

0.0137

0.0219

0.0598

0.0669

0.0278

0.0241

0.0617

0.0682

0.0309

0.0152

0.0752

0.0750

0.0153

Table 3.2: Normal case. ER(3.45) checks the adequacy of the models.

p

DR(a)

DR(b)

DR(c)

DR(d)

HS

GN

RM

EVT

1%
5%
95%

99%

MSE

MSE

MSE

MSE

0.3714

0.0534

0.0795

0.1203

0.3471

0.0521

0.0637

0.1341

0.3499

0.0545

0.0592

0.1276

0.3549

0.0551

0.0587

0.1270

0.7319

0.0654

0.0590

0.2222

0.0641

0.0296

0.0111

0.0592

0.1228

0.0325

0.0499

0.0768

0.3409

0.0575

0.1009

0.1306

Table 3.3: t-case. MSE (3.44) measuring the distance between the true and esti-

mated VaR.
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p DR(a) | DR(b) | DR(c) | DR(d)| HS | GN | RM | EVT

1% | ER | 0.0105 | 0.0133 | 0.0129 | 0.0128 | 0.0106 | 0.0221 | 0.0295 | 0.0135
5% | ER | 0.0537 | 0.0390 | 0.0347 | 0.0342 | 0.0529 | 0.0463 | 0.0554 | 0.0666

95% | ER | 0.0544 | 0.0398 | 0.0358 | 0.0352 | 0.0530 | 0.0441 | 0.0525 | 0.0684

99% | ER | 0.0103 | 0.0135 | 0.0132 | 0.0131 | 0.0116 | 0.0216 | 0.0283 | 0.0143

Table 3.4: t-case. ER(3.45) checks the adequacy of the models.

p DR(a) | DR(b) | DR(c) | DR(d)| HS | GN | RM | EVT

1% | MSE | 0.0534 | 0.0618 | 0.0688 | 0.0716 | 0.0785 | 0.0678 | 0.0552 | 0.0292
5% | MSE | 0.0127 | 0.0162 | 0.0198 | 0.0208 | 0.0186 | 0.0105 | 0.0166 | 0.0115
95% | MSE | 0.0256 | 0.0248 | 0.0245 | 0.0247 | 0.0279 | 0.0085 | 0.0142 | 0.0318

99% | MSE | 0.1436 | 0.1293 | 0.1390 | 0.1382 | 0.1296 | 0.0669 | 0.0906 | 0.1130

Table 3.5: Gamma case. MSE (3.44) measuring the distance between the true and

estimated VaR.

p DR(a) | DR(b) | DR(c) | DR(d) | HS | GN | RM | EVT

1% | ER | 0.0116 | 0.0072 | 0.0058 | 0.0055 | 0.0141 | 0.0098 | 0.0134 | 0.0182
5% | ER | 0.0581 | 0.0385 | 0.0321 | 0.0312 | 0.0535 | 0.0433 | 0.0460 | 0.0891
95% | ER | 0.0480 | 0.0558 | 0.0571 | 0.0571 | 0.0526 | 0.0782 | 0.0802 | 0.0736

99% | ER | 0.0087 | 0.0125 | 0.0160 | 0.0166 | 0.0139 | 0.0358 | 0.0406 | 0.0154

Table 3.6: Gamma case. ER (3.45) checks the adequacy of the models.
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p DR(a) | DR(b) | DR(c) | DR(d) | HS | GN | RM | EVT

1% | MSE | 0.2435 | 0.2618 | 0.2172 | 0.2177 | 1.1790 | 0.0760 | 0.0901 | 0.0614
5% | MSE | 0.0310 | 0.0305 | 0.0326 | 0.0331 | 0.0305 | 0.0165 | 0.0156 | 0.0335
95% | MSE | 0.0443 | 0.0424 | 0.0414 | 0.0416 | 0.0683 | 0.0080 | 0.0172 | 0.0538

99% | MSE | 0.1347 | 0.1339 | 0.1303 | 0.1297 | 0.4364 | 0.0730 | 0.0726 | 0.0866

Table 3.7: Non iid case. MSE (3.44) measuring the distance between the true and

estimated VaR.

p DR(a) | DR(b) | DR(c) | DR(d)| HS | GN | RM | EVT

1% | ER | 0.0102 | 0.0105 | 0.0097 | 0.0096 | 0.0149 | 0.0170 | 0.0209 | 0.0158
5% | ER | 0.0551 | 0.0387 | 0.0337 | 0.0331 | 0.0562 | 0.0432 | 0.0527 | 0.0777
95% | ER | 0.0520 | 0.0501 | 0.0468 | 0.0464 | 0.0520 | 0.0612 | 0.0701 | 0.0669

99% | ER | 0.0097 | 0.0142 | 0.0159 | 0.0160 | 0.0123 | 0.0318 | 0.0368 | 0.0139

Table 3.8: Non iid case. ER (3.45) checks the adequacy of the models.

p DR(a) | DR(b) | DR(c) | DR(d) | HS | GN | RM | EVT

1% | MSE | 0.0445 | 0.0365 | 0.0347 | 0.0341 | 0.0404 | 0.0309 | 0.0363 | 0.0337
5% | MSE | 0.0094 | 0.0088 | 0.0090 | 0.0090 | 0.0091 | 0.0072 | 0.0087 | 0.0057
95% | MSE | 0.0115 | 0.0104 | 0.0101 | 0.0101 | 0.0119 | 0.0041 | 0.0057 | 0.0140

99% | MSE | 0.0316 | 0.0306 | 0.0302 | 0.0302 | 0.0362 | 0.0243 | 0.0294 | 0.0351

Table 3.9: TGARCH Normal case. MSE (3.44) measuring the distance between the

true and estimated VaR.
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p DR(a) | DR(b) | DR(c) | DR(d)| HS | GN | RM | EVT

1% | ER | 0.0097 | 0.0115 | 0.0119 | 0.0122 | 0.0127 | 0.0169 | 0.0175 | 0.0125
5% | ER | 0.0495 | 0.0511 | 0.0508 | 0.0507 | 0.0525 | 0.0546 | 0.0593 | 0.0620

95% | ER | 0.0505 | 0.0461 | 0.0452 | 0.0452 | 0.0508 | 0.0490 | 0.0534 | 0.0581

99% | ER | 0.0101 | 0.0097 | 0.0096 | 0.0096 | 0.0122 | 0.0132 | 0.0153 | 0.0115

Table 3.10: TGARCH Normal case. ER (3.45) checks the adequacy of the models.

p DR(a) | DR(b) | DR(c) | DR(d)| HS | GN | RM | EVT

1% | MSE | 0.0068 | 0.0258 | 0.0312 | 0.0312 | 0.0101 | 0.0319 | 0.0326 | 0.0047
5% | MSE | 0.0028 | 0.0062 | 0.0073 | 0.0074 | 0.0030 | 0.0063 | 0.0080 | 0.0028
95% | MSE | 0.0068 | 0.0077 | 0.0079 | 0.0080 | 0.0082 | 0.0046 | 0.0056 | 0.0083

99% | MSE | 0.0337 | 0.0463 | 0.0507 | 0.0510 | 0.0418 | 0.0343 | 0.0368 | 0.0334

Table 3.11: TGARCH Gamma case. MSE (3.44) measuring the distance between

the true and estimated VaR.

p DR(a) | DR(b) | DR(c) | DR(d) | HS | GN | RM | EVT

1% | ER | 0.0115 | 0.0027 | 0.0020 | 0.0020 | 0.0134 | 0.0033 | 0.0057 | 0.0141
5% | ER | 0.0568 | 0.0270 | 0.0238 | 0.0237 | 0.0520 | 0.0283 | 0.0378 | 0.0713
95% | ER | 0.0472 | 0.0586 | 0.0592 | 0.0593 | 0.0507 | 0.0693 | 0.0693 | 0.0596

99% | ER | 0.0090 | 0.0181 | 0.0201 | 0.0203 | 0.0121 | 0.0289 | 0.0314 | 0.0123

Table 3.12: TGARCH Gamma case. ER (3.45) checks the adequacy of the models.

84



Average log-returns for the same period as the “distorted” series. The period is
from January 2002 to September 2003. Since the true VaR is unknown, we only use
one measure exceedance ratio (3.45) to test our model. We first test the adequacy
of the models by ER measure. If the sample is large enough, ER is an unbiased
estimate of p, and we expect ER to be close to the given probability p. The closer to
p, the better the model is. Otherwise, the model is inadequate. In our result tables,
we write 95%, 99% to represent the short position with probability 5%, 1%. Under
those two cases, ER should be close to small probability 5% and 1%. We expect
the ER to be not far from the given probability. If it’s too far away, the model
would be inadequate. From [25], the Basel Committee of International Settlement
Bank has a rule for the ER measure. If ER is too far away, the volatility should
be penalized by multiply by a factor coefficient to make the VaR larger than the
estimated. The second measure is expected shortfalls. That measure is to test the
conditional expected loss of the models.

We use all the five models in the application of real data. The results are in
the tables 3.13 to 3.18. The notations are the same as that in the previous section.
DR means the semiparametric density ratio model, HS means historical simulation
model (we select a period length of 250 in this model) , GN means GARCH normal
model, RM means RiskMetrics model, EVT means extreme value theory model.
From the tables we can see that, for the measure of ER, DR model is almost always
the best for all the three data sets. Comparatively, GN and RM are not adequate
enough. The ER of them sometimes are too far away. For example, for IBM with
probability 1%, the ER for GN is 0.04 and ER for RM is 0.07, but we expect it to
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be around 0.01. In that case, ER for DR is 0.0091. As a consequence, GN and RM
tend to underestimate the true VaR. Some other literature also verifies this. As for
the other measure of expected shortfalls, although it’s widely used, we can not see
which model performs uniformly better from this measure. It’s also interesting to

see that EVT performs better with a small probability than with a larger one.
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Given p DR HS GN RM EVT
1% VaR | -0.0629 | -0.0537 | -0.0395 | -0.0308 | -0.0582
5% VaR | -0.0352 | -0.0286 | -0.0281 | -0.0218 | -0.0326
95% | VaR | 0.0376 | 0.0334 | 0.0267 | 0.0218 | 0.0297
99% | VaR | 0.0692 | 0.0768 | 0.0381 | 0.0308 | 0.0521

Table 3.13: VaR for IBM.

Given p DR HS GN RM EVT
1% ER | 0.0091 | 0.0205 | 0.0410 | 0.0729 | 0.0137
5% ER | 0.0456 | 0.0866 | 0.0934 | 0.1298 | 0.0592
95% | ER | 0.0456 | 0.0592 | 0.0888 | 0.1276 | 0.0706
99% | ER | 0.0114 | 0.0068 | 0.0456 | 0.0661 | 0.0137

Table 3.14: ER of VaR for IBM. ER (3.45) checks the adequacy of the models.
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Given p DR HS GN RM EVT
1% VaR | -0.0452 | -0.0344 | -0.0224 | -0.0196 | -0.0359
5% VaR | -0.0266 | -0.0194 | -0.0158 | -0.0139 | -0.0194
95% | VaR | 0.0268 | 0.0220 | 0.0162 | 0.0139 | 0.0190
99% | VaR | 0.0476 | 0.0358 | 0.0229 | 0.0196 | 0.0384

Table 3.15: VaR for EXXON.

Given p DR HS GN RM EVT
1% ER | 0.0091 | 0.0251 | 0.0729 | 0.0934 | 0.0205
5% ER | 0.0433 | 0.0957 | 0.1367 | 0.1708 | 0.0957
95% | ER | 0.0410 | 0.0661 | 0.1162 | 0.1708 | 0.0934
99% | ER | 0.0068 | 0.0205 | 0.0615 | 0.0888 | 0.0159

Table 3.16: ER of VaR for EXXON. ER (3.45) checks the adequacy of the models.

Given p DR HS GN RM EVT
1% VaR | -0.0411 | -0.0339 | -0.0255 | -0.0203 | -0.0380
5% VaR | -0.0256 | -0.0224 | -0.0181 | -0.0144 | -0.0192

95% VaR | 0.0256 | 0.0228 | 0.0178 | 0.0144 | 0.0258
99% VaR | 0.0432 | 0.0389 | 0.0252 | 0.0203 | 0.0398

Table 3.17: VaR for Coca Cola.
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Given p DR HS GN RM EVT

1% ER | 0.0091 | 0.0182 | 0.0547 | 0.0934 | 0.0114
5% ER | 0.0547 | 0.0774 | 0.1071 | 0.1390 | 0.0957
95% ER | 0.0456 | 0.0592 | 0.1071 | 0.1526 | 0.0456

99% ER | 0.0046 | 0.0137 | 0.0501 | 0.0843 | 0.0114

Table 3.18: ER of VaR for Coca Cola. ER (3.45) checks the adequacy of the models.

3.5 Conclusion

We discussed the extension of a certain semiparametric method originally intended
for independent random samples to time series prediction by assuming additive noise.
Using the combined data from several time series and from accompanying known
covariate data we have shown how to estimate the true probability distribution of
a “reference” time series and use it in conditional prediction.

When the form of the regression functions f; in (3.22) is known up to some
parameters, the parameters can be estimated by least squares, by maximum likeli-
hood, or by the method of moments as was indicated in the bivariate AR example.
Another way to estimate the unknown parameters in f; is to use the profile log-
likelihood (3.31). When the f; are estimated, the semiparametric procedure can be
applied with the residual innovations replacing the unobserved noise as was done in
the mortality example.

The noise sequences need not consist of independent data, and the likelihood
can be replaced by partial likelihood, as argued in [30], as long as each noise sequence

consists of identically distributed random variables. This leads to a similar analysis
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as above.

The potential of the semiparametric approach in financial time series appli-
cations was demonstrated in VaR estimation where we combined or fused return
information from two sources. It seems that the method is able to accommodate a
wide spectrum of scenarios ranging from normal to highly non-normal processes.

It is important to note that we may combine the residuals of the main regres-
sion equation used in prediction with other data samples which are not necessarily

residuals. This means that in (3.22) we may retain only the time series of interest

Tmt = fm(zm,t—l) +em, t=1,...,np

and combine its residuals with data from other sources assuming the tilt model
(3.23), for the purpose of estimating the distribution G(z) of €.

The method depends on the choice of a distortion function h(z). Our expe-
rience with geophysical data indicates that for skewed data h(z) = log(x) is quite
appropriate, while h(x) = x is suitable for symmetrically distributed data with dif-
ferent means but close variances [29],[40]. In logistic discriminant analysis h(z) = x
or h(z) = (x,2%) [48]. The problem of choosing h(z) has been considered recently
in [19] using the so called Box—Cox transformation. However the issue of estimating
h(z) in general is still open.

The question of goodness of fit can be tackled by measuring the discrepancy
between G and the empirical distribution form the mth (reference) sample. This is

studied in [42],[50].
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Appendix A

Derivation of S,V
The matrices S, V' are derived by repeated differentiation of (3.31). Recall that the

asymptotic covariance matrix of the estimates in (3.34) is given by the product

T=8'vst (A1)
First define
B o 0 a\
= A2

Then E[Vi(ay,...,aq,B4,-,8,)] = 0. To obtain the score second moments it is

convenient to define p,, =1, wy,(t) =1,

(] = [ hityw; ()46 (1) (A.3)

and,

Al =

h(t)w;(t)w; (1)dG (1)
L+ 3242, prwi(t)
h(t)h' (t)w;(t)w; (1)dG(t)
/ L+ Y0 prwi(t) (4.6)

A?(j?.jl)

for j,j' =1,...,q. Then, the entries in

Lﬂvual,...,aq,ﬂl,...,ﬁq) (A7)

VEVa’rl\/_
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are,

1 ol P2 om '
_V a7 = v A - TA2 b A8
() = - Eekon o
l ﬁ ol _ PjPy' C
nC’ov <804j’ 8aj/> 1+ St ok {4(5.5)
— > Ao ) Ao (i)} (A.9)
r=1
1 ol ol p? o
—Cov| 7—, 22| = —=—1A E;[R(t
20m (gay 38;) = TR B
— > o Ao(d, ) AL )} (A.10)
r=1
—C _ = PP 14 NE. TR (t
n (30@’33]-') Tyl pp 0l ()]
= 2 prAo(j, )AL (T 1)} (A.11)
r=1
“Cov | azymo | = (A5, 5) + Ej[R(1)] A (.
n <a/3]. agj,> 1+ZZ:1pk{ 2(4,7') + Ej[h(t)] A1 (4, ')

+ A, ) Ey[A (1))

- i pTAl (]7 T)All(jl7 7’)}

r=1

+ =2 > Covlh(e;), hejn)] (A.12)

The last term is 0 for j # j' and (n;/n)Var[h(e;;)] for j = j'.

Next, as n — oo,

1
— VYU, ey, By B,) = S (A.13)

where S is a ¢(1 + p) x ¢(1 + p) matrix with entries corresponding to j,j' =1, ..., ¢,

1 9% Pj [1+ ZZ;ﬁj prwi(t)]w; (t)
1 . dG(t A.14
n da;3 1420 px / L+ Y0_, prwi(t) ) ( )
1 0% —pjpj w; (H)wy (t)
_ - dG(t A.15
n daja T+ o) 1+30 prw(t) ) ( )
1 9% pj [1+ 3242, prwi()]w; (8 (1)
i - = dG(t A.16
n da;0B;; 14+ Y7 pe / 14+ 37 prwe(t) ® )
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1% —PiPy' w; (Hwy (HR'()

—— dG(t A7
n 008 ~ o1y Shoped 1+ X0 prw(t) ®) (A-17)
1 9% pj [1+ 3k prwe(H)]w; () h(t)R' (1)

_— dG(t
n 0pB;08; TS / 1+ Yk prwi(t) ©

(A18)

I —PiPy w;(t)wy ()RR (t)

_ dG A.19
n 98,08 7o + ko1 Px 1+ 371 pewi(t) © ( )
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