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m Ben has made many contributions to time series
Introduction methodology.
m A common theme is that some unobserved (/atent)
series controls either:
m the values of the observed data, or
m the distribution the observed data.
m In a stochastic volatility model, a latent series controls
specifically the variance of the observed data.

m We relate stochastic volatility models to other time
series models.
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Time series modeling is not just about correlation...

Time Series T USED T THINK, THEN T TOOK A SOUNDS LIKE THE
Models CORRELATION IMPUED| | STATISTICS CLass. cmss HELPED.
Now I DON'T. WELL, nm*aa.

07 15919

http://xkcd.com/552/
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Time Domain Approach
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m The time domain approach to modeling a time series
{Yt} focuses on the conditional distribution of
YilYie1, Yio, ...

m One reason for this focus is that the joint distribution of
Yy, Yo, ..., Yy can be factorized as

Time Series
Models

f1:n(}/1»}’2> cee ’,Vn)
=) (Ve lyr) - - fapn—14Wn [Yn—1, Yn—2, -, 1) -

m So the likelihood function is determined by these
conditional distributions.
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The conditional distribution may be defined by:
m the conditional mean,

Time Series
Models

pe=EYt|Yia =yi1,Yi2=Yr2,.. )
m the conditional variance,
hy =Var(Y:|Yi—1 = Yi—1, Yi—2 = Vt—2,... );

m the shape of the conditional distribution.



Forecasting
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m The conditional distribution of Y; |Y;_1, Y;_»2,... also
gives the most complete solution to the forecasting
problem:
Time Series

Models m We observe Y;_1, Yi_o,...;
m what statements can we make about Y;?
m The conditional mean is our best forecast, and the
conditional standard deviation measures how far we
believe the actual value might differ from the forecast.

m The conditional shape, usually a fixed distribution such

as the normal, allows us to make probability statements
about the actual value.
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First Wave
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m The first wave of time series methods focused on the
conditional mean, p;.

m The conditional variance was assumed to be constant.
m The conditional shape was either normal or unspecified.

Frstave m Need only to specify the form of

pt = pt(Ve1,Yi—2,-..).

m Time-homogeneous:

ot :M(yt—‘layt—Za"')?

depends on t only through y;_1, y;_o,....



Autoregression
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m Simplest form:
ut = a linear function of a small number of values:

pt = P1Yt—1 + -+ GpYt—p-
m Equivalently, and more familiarly,
Yi=01Yi1+ -+ pYipte,
where ¢; = Y; — u; satisfies

E(et“/t—h Yt—2a s ) = 0’
Var(et | Yi_1, Yio, ... ) =h.



Recursion

Modeling The
Variance of a
Time Series

m Problem: some time series need large p.
m Solution: recursion; include also some past values of
Mt

Pt = O1Yt-1+ -+ OpYi-p + V11 + -+ Yghii—g-
m Equivalently, and more familiarly,
Yi=¢1Yi1+ -+ dpYipte+ 0161+ -+ 0gctg-

m This is the ARMA (AutoRegressive Moving Average)
model of order (p, q).
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Two Years of S&P 500: Changing Variance
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Second Wave
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m The second wave of time series methods added a
focus on the conditional variance, h;.

m Now need to specify the form of

ht = he(Yt-1,Yt-2,--).
m Time-homogeneous:

ht = h(yt-—1,¥1-2,...),

depends on t only through y;_1, y;—o,....
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m Simplest form: h; a linear function of a small number of
squared es:

ht=w+ager { +---+ aqef_q.

m Engle, ARCH (AutoRegressive Conditional
Heteroscedasticity):
m proposed in 1982;
m Nobel Prize in Economics, 2003 (shared with the late
Sir Clive Granger).



Recursion
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m Problem: some time series need large q.

m Solution: recursion; include also some past values of
hti

ht=w—+ 1€+ + ages_g. + Bihi_1 + -+ + Bohr_p.

m Bollerslev, 1987; GARCH (Generalized ARCH; no
Nobel yet, nor yet a Knighthood).

m Warning! note the reversal of the roles of p and q from
the convention of ARMA(p, q).



GARCH(1,1)
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m The simplest GARCH modelhas p=1,9 = 1:
hy =w+ ae?_1 + Bhi_q

m If a + 8 < 1, there exists a stationary process with this
structure.

m If o« + 6 =1, the model is called integrated.
IGARCH(1,1).



Outline

Modeling The
Variance of a
Time Series

Stochastic Stochastic Volatility

Volatility



Stochastic Volatility
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m In a stochastic volatility model, an unobserved (/atent)
process {X;} affects the distribution of the observed
Stochastc process { Y:}, specifically the variance of Y;.

Volatilty m Introducing a “second source of variability” is appealing
from a modeling perspective.
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m For instance:
m {X;} satisfies

X —p=¢(Xi—1 — ) + &,

where {&} are i.i.d. N(O,af).
m If |¢| < 1, this is a (stationary) autoregression, but if
¢ = 1itis a (non-stationary) random walk.

® Y; = oy, Where 02 = 02(X;) is a non-negative function
such as

Stochastic
Volatility

a?(Xr) = exp(X:)
and {n;} are i.i.d. (0, 1)-typically Gaussian, but also t.



Conditional Distributions
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m So the conditional distribution of Y; given Y;_1, Y;_o,...
and X, X;_1,... is simple:

Yf|Yt—1a Yt—27 v 7Xt7Xt—1a' Y N(O,O'Z(Xt)) .

Stochastic m But the conditional distribution of Y; given only
Yolatily Y;:_1, Yi_o, ... is not analytically tractable.

m In particular,

ht(Yt-1, Y2, ) =Var(Ye Y1 =Y 1, Yio = Yr2,...)

is not a simple function.



Difficulties
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m Analytic difficulties cause problems in:
m estimation;
m forecasting.

Shanasic m Computationally intensive methods, e.g.:

Volatility
m Particle filtering;
m Numerical quadrature.
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Stochastic Volatility and GARCH
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m Stochastic volatility models have the attraction of an
explicit model for the volatility, or variance.

m |s analytic difficulty the unavoidable cost of that
advantage?

Stochastic
Volatility and
GARCH
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The Latent Process

Modeling The
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el We construct a latent process by:
2
v T
Xo~T| 2, =
0 (27 P ) )

Xt = Bt Xi_1,

andfort >0

where

A Simple Tractable
Model

1
08t~ﬂ(g,§)

and {B;} are i.i.d. and independent of Xj.



The Observed Process

Modeling The . .
Variance of & m The observed process is defined for t > 0 by

Yi =omt
where
1
ot = ——,
VX
and {n;} arei.i.d. N(0, 1) and independent of {X;}.
ASinpl Tiaciabe m Equivalently: given X, = x,,0 < u, and

Yo=yu,0<u<t,
Y; ~ N(0,02)

with the same definition of .



Constraints
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m Since
Var(Yo) = E(xo—1) ,

we constrain v > 2 to ensure that

E(X") < .

E(X% ') =E(%")
for all t > 0 is also convenient, and is met if

v—2

v—1°

m Requiring

A Simple Tractable
Model

6=




Comparison with Earlier Example
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This is quite similar to the earlier example, with ¢ = 1:
m Write X;* = —log (Xt).

m Then
Xi =X +¢&,
where
& = —log (B)-
A i T m Interms of X},

o? = exp(X;).



Differences
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m A key constraint is that now ¢ =1, so {X;} is a
(non-stationary) random walk, instead of a (stationary)
auto-regression.

m Also {X;} is non-Gaussian, where in the earlier
example, the latent process was Gaussian.

m Also {X;} has a drift, because

(&) # 0.

m Of course, we could include a drift in the earlier
example.

A Simple Tractable
Model
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A Simple Tractable
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Matched Simulated Random Walks
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A Simple Tractable — nu=5

Model .
—— Gaussian

I I I I I I
0 20 40 60 80 100



So What?
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m So our model is not very different from (a carefully
chosen instance of) the earlier example.

m So does it have any advantage?

m Note: the inverse Gamma distribution is the conjugate
prior for the variance of the Gaussian distribution.

A Simple Tractable
Model



Marginal distribution of Yy
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m Marginal distribution of Yj:
Yo ~ v ho t*(v)

2
v—2

and t*(v) is the standardized t-distribution (i.e., scaled
to have variance 1).

where

hy =

A Simple Tractable
Model



Conditional distributions of Xy and Xi| Yo
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m Conjugate prior/posterior property: conditionally on

YOZyO!
2 2
X0~r<”+1 T +yo)’

2 7 2

m Beta multiplier property: conditionally on Yy = yq,

2 2
14 TS + yo
A Simple Tractable Xi =B/ Xn~T|=
Model 1 110 [2 ’ 0 < 2 )




Conditional distribution of Y| Yq
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m The conditional distribution of Xi|Y; differs from the
distribution of Xj only in scale, so conditionally on

Yo = Yo,
Y1~ t*(v),
where

hy =

0
——— (P4 18) = 0ho + (1-0)18.

A Simple Tractable
Model

m Hmm...so the distribution of Y;|Yj differs from the
distribution of Yy only in scale...| smell a recursion!



The Recursion
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m Write Yt_1 = (Yt_1, Y[_Q, cee Yo)
m For t > 0, conditionally on Y;_1 = y;_1,

Yi~ Vet (v),
where

ASimpie Tractatle hl‘ — Ght_1 + (1 . 9)y1‘2_1 )



The Structure
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m Thatis, {Y;} is IGARCH(1, 1) with t(v)-distributed
innovations.
m Constraints:
mw=0;
mi=1-a= Z—:f
m So we can have a stochastic volatility structure, and still
have (I)GARCH structure for the observed process

A Simple Tractable { Yt} "
Model


http://www4.stat.ncsu.edu/~bloomfld/talks/sv.pdf

The Structure

Modeling The
Variance of a
Time Series

m Thatis, {Y;} is IGARCH(1, 1) with t(v)-distributed
innovations.
m Constraints:
mw=0;
mi=1-a= Z—:f
m So we can have a stochastic volatility structure, and still
have (I)GARCH structure for the observed process

A Simple Tractable { Yt} "

o m Details and some multivariate generalizations sketched
out at http://wwwi.stat .ncsu.edu/~bloomfld/talks/sv.pdf


http://www4.stat.ncsu.edu/~bloomfld/talks/sv.pdf
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Two Years of S&P 500

Modeling The
Time Seres m Data: 500 log-returns for the S&P 500 index, from
05/24/2007 to 05/19/2009.
m Maximum likelihood estimates:
72 =437
6=0.914
=0 =126.

m With v unconstrained:

72 =3.37
0.918
9.93.

An Application

D™
Il



Comparison
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m Constrained result has less heavy tails and less
memory than unconstrained result.

m Likelihood ratio test:

—2log(likelihood ratio) = 0.412
assuming ~ x2(1), P = 0.521,

so differences are not significant.
m With more data, difference becomes significant.

An Application
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m Latent processes are useful in time series modeling.

m GARCH and Stochastic Volatility are both valuable
tools for modeling time series with changing variance.

m GARCH fits naturally into the time domain approach.

m Stochastic Volatility is appealing but typically
intractable.

m Exploiting conjugate distributions may bridge the gap.

Summary



Summary
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m Latent processes are useful in time series modeling.

m GARCH and Stochastic Volatility are both valuable
tools for modeling time series with changing variance.

m GARCH fits naturally into the time domain approach.

m Stochastic Volatility is appealing but typically
intractable.

m Exploiting conjugate distributions may bridge the gap.

Summary

Thank you!



ON OPTIMAL PREDICTIVE INFERENCE
IN LOG-GAUSSIAN RANDOM FIELDS
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LOG-GAUSSIAN RANDOM FIELDS

The random field {Z(s), s € D}, D Cc R% and
d > 1, is log-Gaussian if {Y(s), s € D}, with
Y (s) = log(Z(s)), is Gaussian.
Here we assume that the mean and covariance
functions of Y (-) are given by

E{Y(s)} = py
cov{Y (s),Y (u)} Cy(s,u)

where puy € R unknown and Cy(s,u) a known
covariance function in Rd, satisfying that for
all s € D, Cy(s,s) = 052/.

It follows the mean and covariance functions
of Z(-) are given by

0.2
E{Z(s)} = exp{uy + 7} =i pz

cov{Z(s), Z(w)} = pz(exp{Cy(s,u)} — 1).

2



PREDICTIVE INFERENCE

DATA: Z = (Z(s1),...,Z(sn)) measured at
sampling locations sq,...,sp € D. Let

sop € D an unmeasured location in D
B C D a subregion of interest
GOALS:

e Obtain predictor of Z(sg)
(point prediction).

e Obtain prediction interval for Z(sg)
(interval prediction)

e Obtain preditor of Z(B) = |—1|fB Z(s)ds
(block prediction).



POINT PREDICTION

Let Zg be a predictor for Zg (within a family)
and L(Zy,Zg) a loss function.

The optimal predictor of Zy is the predictor
that minimizes the risk function

r(Zo) = E{L(Zo, Zo)}

For the squared error loss the risk function
becomes the mean squared prediction error

MSPE(Zo) = E{(Zo — Zo)*}.

Notation: All quantities that depend on the
prediction location sg would be written with

the subscript ‘O’.



If uy were known, the optimal predictor and
its MSPE are given by

Z5 =

MSPE(Z{)

where

Yo

k
o)’

E{Zo | Z}
. on
exp{¥g + 2"}
var(Zg) — var(Z3)
—1
pz(exp{oy} — exp{chy Ty coy ),

E{Yo | Y}

py + oy =yt (Y — pyl)
var(Yp | Y)

2 / —1 .
O'Y — COYzY COY,

>vij = Cy(s;,85)
coy,i = Cy(so,s;).

These are known in the geostatistical
literature as the simple kriging predictors and
simple kriging variances of Zy and Y.



Unbiased Prediction:

In practice the most used predictor is the
lognormal Kriging predictor

7288 = exp{VEH + 2 ( Aoy ZyAoy) s

MSPE(Z(%/K) = ,LL%( eXD{O'%/}-I—eXD{)\/OYZy)\oy}—Q eXD{A/OYZony—moy});

v§E = A, Y (the BLUP of Yp)
—1
1 — ]‘,ZY Coy

1)1
D3 Sy

>
O ~
h<

|
—
o
O
1~<
+

By construction Z§{# satisfies the following
optimality property:



Proposition 1. The predictor Z§® minimizes
E{(log(Zy) —109(Zp))?} over the class of pre-
dictors of the form Zg = exp{Aj109(Z) + ko},
where Ag € R"™ and kg € R are constrained such
that E{Zy} = E{Zy} for every uy € R.

Recently, Cox (2004) noted a stronger
optimality property:

Proposition 2. The predictor Z§% minimizes

5 2
E{ (,ZO__ZlO) over the class of all
exp{cyy =y 109(Z)}

unbiased predictors of Zj.

T hese optimality properties are somewhat
unsatisfactory.

The former holds in the transformed log-scale
rather than in the original scale of measure-
ment.

The latter, although holds in the original scale,
IS with respect to a weighted squared error l0ss
function with little intuitive appeal.



Optimal Point Prediction:

Consider the family of predictors
Po = {Zo = exp{agY + ko} : ko € R,ap € R", a1l =1}

which includes many special cases:
258, Z8 = exp{V§E} and

_ _ 1 _
28 = exp{VPE + 5(052/ —chyZyteoy) )

_ _ 1
Z§ = eXD{YoOK+§(012/+)\6YZY>\0Y—QXOYCOY)},

Theorem 1. The predictor in the family Pg
that minimizes E{(Zy — Zp)?} is given by

_ . 1
Zyt = eXp{YoOK+§(U§2/—ABYZYAOY—QmOY)},

and its MSPE is given by
MSPE(ZéWE) = ,u%( eXp{O'%/} — eXD{)\byzy)\oy — 2m0y}).

1-— ]./Z)_/lCOY

where mpoy =




BLOCK PREDICTION

A related problem is the prediction of:
1
Z(B =—/sts, B cC D,
(B) = 50 [, 2)
based on (point) data Z.

Examples where inference about this arises:
e Environmental assessment
e Precision farming

Two predictors have been proposed in the
geostatistical literature:
The lognormal kriging block predictor

Z2(B)ME = |B| / 2K (9)ds.

A block predictor motivated by the assumption
of “preservation of lognormality”

Z(B)'t = exp {Y(B)OK + %(03/ — )\’Y(B)Zy)\y(B))} :

where Y (B)9K = A.(B)Y is the BLUP of
Y(B) = [gpY(s)ds/|B| based on Y.

10



Optimal Block Prediction:

Consider the family of block predictors

Pp = {Z(B) = Fl'/ exp{Y 9% (s) + k(s)}ds : k(s) € C(B)},
B

where C(B) is the space of bounded and Lebesgue

measurable functions on B.

Theorem 2. The predictor in the family of
predictors Pg that minimizes E{(Z(B)—Z(B))?}
IS given by

_ 1 _
2(BYME — |§|/B ZME(g)ds,

where ZME(g5) is the optimal point predictor
given before, and MSPE(Z(B)M¥E) is given by

2
‘gﬁ//(exp{Cy(s,u)}—exp{)\’y(S)Zy)\y(u)—mY(S)—mY(u)})deu-
BJB

11



Considering now the family of block predictors

P = {Z2(B) = exp{V(B)°K + kg} : kg e R}

Theorem 3. The predictor in the family of
predictors Pp that minimizes E{(Z(B)—Z(B))?}
IS given by

2(BYMP = exp (¥ (B)OK + 2 (67 — 3, (B)Sy v (B))

1 ’
_|_|Og (_/ GAY(B)CY(S)dS)}
1Bl /B

and MSPE(Z(B)MP) is given by

4 C dsd
@< exp{Cy (s, u) }dsdu
BJB

—|B]?exp {21log (‘—;‘ / e’\;(B)cY(s)ds) — A (B)SyAv(B) }).
B

12



Remarks.

From the above results follow that:
o ZtK is inadmissible, in the sense that
MSPE(Z)F) < MSPE(Z{K) for all py € R.

e Z(B)LE and Z(B)FL are both inadmissible.

o Z(BYME and Z(B)MP and their MSPEs
can not be compared analytically;
they are compared numerically.

13



COMPARISON OF PREDICTORS

Let the region D = [0,1] x [0,1] and random
field Z(s) = exp{Y (s)}, where {Y (s),s € D} is
Gaussian with

[
E{Y(s)} =py , Cy(s,u)=o% exp{—5-};
| = ||s — u]| is Euclidean distance, uy € R and
0'32/,93/ > 0.

Data on Z(-) is observed at n = 50 sampling
locations chosen at random.

1.0

0.8

0.6

0.4

0.2

0.0

T
0.0 0.2 0.4 0.6 0.8 1.0

14






Point Predictors:

We compare the values of Z)}M¥ and Z{%
by predicting Z(sg) for locations:
sp = (0.5,0.5),(0.3,0.8) and (0.9,0.9).
For that note
0o _ _ 0
= = exXp{—moy} = :
Z58 E{Zp}

which does not depend on the observed data.

To compare the predictors in terms of their
MSPE's we use the predictive efficiency of
ZME relative to ZHE

_ _ MSPE(ZME)

ME LKy _

RMSPE(Zy'", Z§™) = MSPE(ZOLK)'
0

15
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J-coordinate

Block Predictors:

We compare the block predictors of Z(B) for
the sub-regions B shown below:

< _|  _|

oo _ | . N oo _ | -
= : . (=3 . !

——————————————

06
| |
y-Coordinate

06
| |

-t -
=1 =
______________

p - ~ _f L a__-_-_--

L [

e o

= | = |

T T T T T T T T T T T
O.0 0.2 o.4 0.6 0.8 1.0 0.0 o.2 o.4 0.6 0.8 1.0
x—coordinate x—coordinate

The predictors are approximated by noting that

Z(B)ME = Eg{Z"(S)} , Z(B)MF = Eg{ZMF(S)},

where ZLE () and ZME(.) are point predictors
and expectation is taken with respect to
S ~ unif(B).

18
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The Non-constant Mean Case:

Suppose now that

p
py (s) = ) Bif;i(s),

j=1
where 8 = (B1,...,0p) € RP are unknown re-
gression parameters, (f1(s),..., fp(s))’ are known

location-dependent covariates.
In this case we have:

e [ he result on optimal point prediction
(Theorem 1) can be easily extended.

e [ he results on optimal block prediction
(Theorems 2 and 3) cannot be extended.
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FIRST CONCLUSIONS

e New point and block predictors for log-Gaussian
processes have been proposed that improve
upon existing ones.

e [ he lognormal kriging point and block
predictors have (near) optimality properties in
the original scale.

e [ he lognormal kriging block predictor is
substantially better than the block predictor
motivated by “permanence of lognormality” .
Also, the best predictor in Ppg is substantially
better than the the best predictor in Pg.

e For random fields with non-constant mean
the optimal results also hold for point predic-
tion, but not for block prediction.

24



INTERVAL PREDICTION

Here we assume that the mean and covariance
functions of Y (-) are given by

p
E{Y(s)} = > Bjfi(s)
j=1
cov{Y(s),Y(u)} = C(s,u)
f1(s), ..., fp(s) known covariates
B=(B1,...,8p) € RP unknown parameters

C(s,u) parametric covariance function in R4
satisfying C(s,s) = ¢2 > 0
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OBSERVED DATA:
Noisy measurements of the random field Z(-)
at known sampling locations s1,...,sp € D:

Zi obs = Z(8;)¢i, i=1,...,n,

{log(e;)} 9 N(0,c2) are measurement errors
distributed independently of Z(-), and o2 > 0.

GOAL:

obtain prediction interval for Zg = Z(sg), the
unobserved value of the process at sg € D,
based on Z = {Z; ops}i—1-

Model parameters are 3 € RP and ¥ € © C RY
include 02,02 and other parameters in C(s,u).
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Common approach to construct prediction
intervals for Z(-) is to transform prediction
intervals for Y (). Let

Y =log(Z) and Yy=log(Zp)

The BLUP of Yy based on Y and its mean
squared prediction error are

To(9) = Ay (9)Y |, 52(8) = 02—2X, (1) co(9) 4N, (9) Ty Ao (D)
with
Ao(9) = (co(®) + X (X'Z5'X) M (xo — X' co(9))) =5

X = (f;(8))nxp: X0 = (f1(30)s-- -, fp(s0))’

> 9, co(¥) are the n x n and n x 1 matrices:
>9.ij = C(si,8))+021{i = j}, co(¥9); = C(sq,s;).
> 9 is positive definite for any ¥ € ©.

We start by assuming that 9 is known.
27



It follows
(s )= ((3) (o 2D )
Yo () 2 xbB )7\ Ap(9)co(¥)  Ap(19)Zyro(9)

so T =Yy — Yo(9) ~ N(0,55(9)) is a pivot for
the prediction of Y.
Then a 1 — « prediction interval for Yy is

Yo(9) £ ¢~ 1(1 — a/2)50(9)

and a 1 — « prediction interval for Zg is

exp{Yp(¥9) + (1 — a/2)50(9)}

We denote this PI as I}/ (a,9) and call it the
standard 1 — o prediction interval for Zj.
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SHORTEST PREDICTION INTERVALS:
KNOWN COVARIANCE CASE

Consider the family of 1 —« prediction intervals
for ZO

Fo = { (exp{Yo(9) — ® (1 - 1)50(¥),
exp{Yo(¥) — (1 —a+7)50(9)}) 1 v € [0,a)}

which includes the standard prediction interval
(obtained for v = a/2).

THEOREM. Let a€ (0,1), 9 € © and sg € D.
Then the shortest prediction interval in Fg is
the one corresponding to the value

t t
vy=73"" = 5" (o, ¥) € (0,0/2)
which is the (unique) solution to the equation

> r1-9) - (1 -a+7y) =25,(9)

Hence the shortest 1 — a PI for Zg in Fq is

I5(a,9) = (exp{Yp(¥) — >~ (1 —~5")50(¥),
exp{Yo(¥) — ®71(1 — a +~5"H50(9)})
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COMPARISON

Let RL(IY (o, 9), I5 (o, 9)) be defined as

len(I5(e, 9))  exp{®1(1 — a+15")50(9)} — exp{—P1(1 — "G50 (9)}
len(I (e, 9))  exp{®~1(1 — a/2)50(F)} — exp{—P~1(1 — a/2)50o(?)}

Consider D = [0,1] x [0,1] and random field
Z(s) = exp{Y(s)}, where {Y (s),s € D} is Gaus-
sian with constant mean and Matérn covari-
ance function

Clom) = 0oLy, Ly
T 20-10(0y) 017 20,7
[ = ||s — u|| is Euclidean distance

¥ = (02,01, 605) are covariance parameters.

We consider the cases 6, = 0.5 and 6, = 1.5
Also assume ¢2 = 0 (no measurement error).
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Findings:

e Length reductions in the range 1-35%

e Length reductions decrease when confidence
level increases

e Length reductions decrease when
smoothness of the process increases

e [ he largest reductions are obtained in mod-

els with highly asymmetric marginals (02 large)
and moderate to weak dependence (6 small)
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SHORTEST PREDICTION INTERVALS:
UNKNOWN COVARIANCE CASE

The previous prediction intervals depend on 9.
The most immediate fix to this problem is to
use I{¥(a,¥) and I5(a,¥), where 9 = 9(z) is
an estimate of .

These are called plug-in prediction intervals.

The drawback is that plug-in PIs have coverage
properties that differ from the nominal cover-
age properties, usually having smaller coverage
than the desired coverage since these PIs in-
tervals do not take into account the sampling
variability of the parameter estimates.

A solution is to calibrate these plug-in PIs:
Cox (1975) and Beran (1990).
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Calibrated Prediction Intervals

The coverage probability function of I§(a,d)
is defined as

mo(a,9) = Py{Zg € I§ (o, 9(Z))}

We start by estimating mg(-,9) with mg(-, ).
The basic idea of calibrating plug-in prediction
intervals is to find a. € (0, 1) for which it holds,
exactly or approximately, that

7-‘-0(0567{9) =1- &,

The calibrated prediction interval is Ig(ac,{?),
which by construction has coverage probability
close to 1 — a.

mo(-,9¥) is usually not available in closed form
SO it needs to be approximated.
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Bootstrap Calibration

Let 7§ (-, ) be a Monte Carlo estimate of mg (-, 9).

One way is simulate (Z*,Zgj), say B times,

from the lognormal model with parameters B =
B(z) and ¥ = ¥(z), and estimate mg(x, ) with

B
1 X * — *\ =~ * * X * — *\ *
=3 H{T(@) - @ (1-5P)50(9;) < Yo < Yo(8))+® (1-atr6P)50(9)}

Jj=1

Y3 =109(Z3,), 9 = 9(Z}) and 45> = 1gP (x, 97).

A better way is to use ‘Rao-Backwellization’
pbased on the identity

Uo(a,d,Y) — no(O,ﬁ,Y)) - ¢<Lo(a,{9,Y) - no(O,ﬁ,Y)) }

mo(a, ) = Ey {dD( (D) (D)

Lo(z,9,Y) = Yo(89) — ®71(1 — 1) 50(9)
Uo(x,9,Y) = Yo(9) + (1 —z +~3")50(9)
Expectation is wrt Y when 3 = 0.
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Algorithm:

Step 1. Compute the ML (or REML) estimate 9 = 9¥(z)
from the observed data z.

Step 2. Simulate B independent and identically distributed
bootstrap samples {Yj :1 < j < B} from the Gaus-

sian random field {Y(s), s € D} with 8 = 0 and
¥ = 9.

Step 3. For each j =1,...,B, compute the estimate
v, = Y(exp(Y;)) based on the bootstrap sample

Y;f.

Step 4. For each sg € D where a PI is sought, compute
L;gj = Lo(a:,ﬂj,Y;‘), Ug;j = Uo(a:,ﬂj,Y;f) and for
z € (0,1) estimate mo(x, ) by

75(, ) = = i (20 Ty _ o 0 o
0 ) — 5 - < ) - <

szl TO T0
where 75 = 10(0,9,Y?) and 7o = 70(9).

Finally, ac is found as the solution (in x) of
mo(x,9) = (1 — )
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Illustration:
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When the data have no nugget the effect of calibration
is often minor.
But when the data contain measurement error the effect
of calibration tends to be substantial.
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Comparison of plug-in and calibrated PIs
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EXAMPLE:

Data on cadmium (Cd) concentrations (in ppm)
measured at 259 locations in a region of about
15 km? in the Switzerland, collected in 1992.

Measurements at 100 locations are used for
validation.

Exploratory analysis suggests the “best” model
is the log-Gaussian random field associated with
constant mean, nugget and exponential covari-
ance function:

B = 0.084, 5° =0.4, 6, = 0.177 and 52 = 0.073.
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0.4
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|

0.4
|

0.3
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0.2
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1
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plug-in calibrated

standard  shortest RL standard shortest RL
1 1.169 1.053 0.900 1.176 1.053 0.890
2 4.763 4.201 0.882 4.853 4.230 0.871
3 4.527 3.908 0.863 4.663 3.999 0.858
4 3.550 3.094 0.871 3.636 3.130 0.861
5 3.337 2.881 0.863 3.433 2.940 0.856
6 2.999 2.615 0.872 3.100 2.680 0.864
7 3.984 3.494 0.877 4.075 3.568 0.875
38 2.738 2.363 0.863 2.832 2.401 0.847
9 2.813 2.479 0.881 2.873 2.502 0.871
10 3.817 3.326 0.871 3.911 3.3903 0.867

The relative lengths of the shortest prediction intervals
with respect to the standard prediction intervals vary
from 0.84 to 0.89, with an average of 0.86, so on av-
erage the shortest prediction intervals are about 14%
shorter than the standard prediction intervals.

For each of the 100 validation locations computed each
type of 95% prediction interval for the Cd true value,
and determined whether of not each Cd observed value
falls into the corresponding prediction interval.

The proportion of 95% plug-in standard, plug-in short-
est, calibrated standard and calibrated shortest predic-
tion intervals covering the corresponding Cd observed
values were, respectively, 0.93,0.93,0.93 and 0.95. The
calibrated shortest prediction intervals seem to have cov-
erage close to nominal.
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A Tale about Hockey Sticks

g-north@tamu.edu



Before the Tale, A few
Chance Encounters

Gerald R. North
- ' Atmos. Sci.
/ Texas A&M



Sampling Errors were a concern
for the proposed Tropical
Rainfall Measuring Mission.

e 1985




I was trying to learn statistics.
I read engineering books,

economics books, Bulmer, eftc.
Then . . .




One of the key papers demonstrating the plausibility of TRMM

Estimation of Mean Rain Rate: Application to Satellite Observations

BENJAMIN KEDEM!

Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park

LoNG S. CHIu?

Applied Research Corporation, Landover, Maryland

GERALD R. NORTH?3
NASA Goddard Space Flight Center, Greenbelt, Maryland

A method for the estimation of the mean area average rain rate from dependent data is developed
and applied to the GARP Atlantic Tropical Experiment GATE data. The method consists of fitting a
mixed distribution, containing an atom at zero, by minimum chi-square in combination with certain
time-space sampling designs. In modeling the continuous component of the mixed distribution it is
shown that the lognormal distribution provides a very close fit for the nonzero area average rainrates.
A comparison with the gamma distribution shows that the lognormal distribution is a better choice as
expressed by the minimum chi-square criterion. Some of the time-space sampling designs correspond
to satellite sampling. The results indicate that a satellite visiting an area of about 350 X 350 km? in the
tropics approximately every 10 hours over a period can provide a rather close estimate for the mean
area average rain rate.

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. D2, PAGES 1965-1972, FEBRUARY 20, 1990



TRMM Orbits

TMI data for Wednesday, 29 July 2009




ol
[CR




Not all of my encounters
were uncorrelated




Ann. Inst. Statist. Math.
Vol. 49, No. 2, 341-354 (1997)

ALIASING EFFECTS AND SAMPLING THEOREMS OF
SPHERICAL RANDOM FIELDS WHEN SAMPLED
ON A FINITE GRID

TA-HsIN LI* AND GERALD R. NORTH?

1Depa71mem of Statistics, Texas AEM University, College Station, TX 77545, U.5. A.
2 Climate System Research Program, Department of Meteorology,
Tezas AEM University, College Station, TX 77843, U.S.A.



Just a sample:

SAMPLING THEOREMS OF SPHERICAL RANDOM FIELDS 345
e [V © O @ A X V <& IO & A XV & 109 A
7 B X OK @D X OKR @H & X O
6 1 O & A X VOO A XV O U
5 OR @B & X OXK @ HB &
c 4 A A X V O & A X V
3 ® H & X O X @
2 v & 0O ¢ A
1 B X O
8 7 6 -5 4 3 2 1 0 1 2 3 4 5 6 7 8

3

Fig. 1. Aliasing effects in Trn when M = 3 (N arbitrary): Coordinates of possible

wutual aliases are represented with identical symbols.



Fast Forward to the Present Century




Global Warming Goes to
Washington (2006)
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Did Earth cool gradually, then heat up fast?
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It’s the Notorious Hockey

Stick!

1000AD

http://en.wikipedia.org/wiki/
Hockey_stick__controversy

2000AD



Past Climates can be Estimated from Proxy Data.



Instrument records go back over a century.




Degree C Anomalies

Jan - Dec Global Surface Mean Temp Anomalies
National Climatic Data Center/NESDIS/NOAA

08 ——rr1—r—r 1Ty

0.6 | Land and Ocean 10
0.3
0.0
-0.3

-0.6
0.6

0.3
0.0
-0.3

-0.6
1.2

salewouy 4 aaibag

0.6

0.0

-0.6

4-2.0

_1. g -2 .5 . N 9.5 2 8 o s.9._0 g 2 5...0..5..5_3 .10 §.42..53_1§
?880 1900 1920 1940 1960 1980 2000
Year



Trend in deg C/decade since 1950

NRC Report 2006



Hockey Stick Time Line

e Mann, Hughes, Bradley (1998, 1999)

e Intergovernmental Panel on Climate Change
(IPCC 2001)

Enter the Amateurs (M&M, 2005)

Enter Congressman Barton, then Boehlert (06)
Enter the National Academy of Sciences
Battling Banjos on the Hill



2001 IPCC features the Hockey Stick: it becomes an Icon
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FIGURE O-4 Multiproxy reconstruction of Northern Hemisphere surface temperature variations over
the past millennium (blue). along with 50-year average (black), a measure of the statistical uncertainty
associated with the reconstruction (grey). and instrumental surface temperature data for the last 150 years

(red). based on the work by Mann et al. (1999). This figure has sometimes been referred to as the
“hockey stick.” SOURCE: IPCC (2001).



Enter the Amateurs (M&M, 2005)

Steve
McIntyre

INTERNATIONAL
CONFERENCE |
ON CLIMATE CHANGE |

03/09/2009




A very crude estimate of global temps was
featured in the 2000 IPCC Report.

Little Ice Age

—_— —— e — —— D W S — —

Medieval
Warm Period

Temperature Change (°C)
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FIGURE O-3 Schematic description of global temperature variations in degrees Centigrade for the last
1 100 vears nublished more than 15 vears aco SOTIRCE: TPC(C (1990)



Enter Congressman Joe Barton

Chairman, Energy &
Commerce Committee
(20006)

e Wegman Report




SURFACE
TEMPERATURE
RECONSTRUCTIONS
FOR THE LAST 2,000
YEARS

Committee on Surface Temperature Reconstructions for the
Last 2,000 Years

Board on Atmospheric Sciences and ClimateDivision on

Earth and Life Studies
NATIONAL RESEARCH COUNCIL OF THE NATIONAL
ACADEMIESTHE NATIONAL ACADEMIES PRESS

Washington, D.C.

NRC Report

North, Wallace, Christy,
Cuffey, Turekian,

Druffle, Otto-Bliesner,
Nychka, Bloomfield,
Biondi, Roberts, Dickinson

12 Anonymous Referees, 2
Monitors




Jerry & Ed
with 1990
graphic.

From
Geotimes,
Sept 2006

Climatologist Gerald North (foreground) and statistician Edward
Wegman testified in front of the House Energy and Commerce
Subcommittee on Oversight and Investigations in July about the famed
hockey stick climate analysis. Photograph is by Christine McCarty,
House Committee on Energy and Commerce.



Kinds of Information
Available

Thermometer Records for the Last 150 years

Proxies for Extrapolation Back in Time:

® Tree Rings

e Ice Cores and Isotopes

e Bore Holes (ice and ground)

e Glacial Lengths

e Historical Records

e Sediments (lake and oceanic)

e Corals, Pollen, Caves, Entomology



How to Reconstruct the Field
(Tree Ring Example)

e Ring Widths are Correlated to
Environmental Conditions

e Use the Instrumental Period to Set
the Temp Scale on the Ring Widths
e Statistical Issues:

- Stationarity, Confounding Variables
- Range Match
- Verification Period



CROSS SECTION of a CONIFER
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5‘-‘&} cambium

AT
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annual fing
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earlywood Making a Record
from many Trees
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figure). Minimum and maximum densities in each annual ring are clearly seen, enabling the annual ring width to
be measured as well as the width of both the earlywood and latewood (courtesy of F. Schweingruber).



Reconstructing a
Temperature Field
using proxies, e.g.,
tree rings

Site selection and
data collection.

Research on the proxy:
Field work, biology, etc.

:

Dating and
preprocessing

¢

Calibration

:

Linearity, stationarity, etc

Statistical assumptions: % %

Validation

:

Reconstruction of

Past Climate
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FIGURE 4-1 Location map of individual sites (red) and regional composites (vellow boxes) used to
reconstruct Northern Hemisphere surface temperatures for the past millennium. SOURCE: D Arrigo et
al. (2006).



Ice Cores

e Chronology (counting back, other)
® Gas Bubbles & Volcanic Ash

e Temps from 30 Isotopes

e Temperatures Down the Bore Hole



Lonnie Thompsons group collects ice cores.




Temperature anomaly (deg C)

NRC 2006 Graphic of STR:
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NRC Committee Concludes

® Last 100 yrs: Temps up 0.6 deg C
- (highly likely ~95% Confident)

e 30 yr averages warmest in 400 yrs
- (likely~2 to 1 odds)

® 30 yr averages warmest 1000 yrs

- (Plausible ~reasonable, not possible to bring a
convincing argument against - no numbers)

http://epw.senate.gov/pressitem.cfm?id=257697&party=rep

“Today’s NAS report reaffirms what I have been saying all along, that
Mann's ‘hockey stick’ is broken,” Senator Inhofe said. “Today's report
refutes Mann's prior assertions that there was no Medieval Warm
Period or Little Ice Age.’






My chance brushes with Ben,
Ta-Hsin, Peter, and Manny,
(Ed W., Too) have enriched
my life and I think we've
done some good.

At least we had fun tryin'.



Introducing a
Fractional INAR(1) Model
for Time Series of Counts

Harry Pavlopoulos
www.stat-athens.aueb.gr/~hgp/

Department of Statistics
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OUTLINE

Motivation by an interest on series of pixel counts and relevant
links to the “Threshold Method” for prediction of SARR.

Introduce Randomized Binomial Thinning and a class of
Fractional INAR(1) models.

Calculation of Moments up to 2™ order, under the assumption of
stationarity.

Simulation and Inference.

Application on daily series of global rain-rate fields.
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MOTIVATION

Let {RI(AZ.J) ; i,j=12,---,n(A) }tT:] be a time series of
instantaneous realizations (measurements) of random “marks”
over the n’(A4) pixels {4, i+ of a 2D Marked Regular Lattice
(MRL) configuration of a random field probed over a fixed
domain 4.

WLOG: assume pixels of square shape
(with fixed side length),

and non-negative marks A
(e.g. environmental / geophysical MRL).




240x240 Km”"2 TOGA-COARE Region, MIT Radar

Rain Rate (mm/hr)
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Cruise-1, Date 921110, Time 23:21 UTC
SARR lattice



MIT Radar, Cruise-1, Date 921110, Time 23:21 UTC
Clipping Threshold = 0 mm/hr
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MIT Radar, Cruise-1, Date 921110, Time 23:21 UTC
Clipping Threshold = 1 mm/hr
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MIT Radar, Cruise-1, Date 921110, Time 23:21 UTC
Clipping Threshold = 2 mm/hr
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South -> to -> North Distance (Km)

MIT Radar, Cruise-1, Date 921110, Time 23:21 UTC
Clipping Threshold =5 mm/hr
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L , n(A4)
. COVER - {Fn,t(u,A): n(A)- Z[[Rt(AiJ.)> u]}

i, j=1

1s a random functional, parameterized by the u-threshold, providing
an important statistical summary of the MRL over 4 at each instant ¢.

{Fn,z (” A)}uzo 1s a functional of random tail-probabilities

corresponding to the instantaneous empirical spatial cumulative

distribution functional (IESCDF): {F (u,A)= I_F (u A)}
nt\ 7 nt\""’

u=0

Time series of pixel counts where a MRL exceeds a fixed u-threshold
n(A)

{Xt(u,A) = Z[[Rt(Ai,j)>u]}

i, j=1 t=12...T

motivate an interest to model (over-dispersed and persistent)
time series of counts.

IECDF



« IESCDF is a natural predictor of instantaneous spatial-cdf (ISCDF)

{Fw,t(u,A )=1-F, (u,4)=4" j IR (a)< u]da}
4 u>0
of the probed underlying spatio-temporal random ﬁe]{glg (a)ac A}
when n(4) 1s large enough and/or |4, |/|A| 1s small enough
(Increasing Domain / Infill Asymptotics).
Lahiri S.N., Kaiser M.S., Cressie N., Hsu N.J.
(JASA 1999, 94: 86-97)

* Analogously, u-COVER is a natural predictor of ISCDF-tails.

« Under appropriate assumptions of spatial-temporal homogeneity,
rendering stationary ISCDF, modelling the numerator of u-COVER by
a stationary model suitable for time series of counts, could (in principle)
facilitate temporal prediction of spatial tail-probabilities.

ISCDF 10



Prediction of spatial sample moments (1.e. moments of IESCDF)
may also be facilitated by implementation of the “Threshold
Method”, provided that the underlying random field has
sufficient variability 1n its intermittency between zero and

positive marks.

RIV(4,;) = 4 | J-Rfk (@)da = J-uk AEo (U3 4,)
Ll A %
RO(4) = : -’f“)R(")(A ) = Tu drf, (u; A)
) : nz(A) i)j:l t i) J !
[k] 1 & ok
R™(A4) = DR ACTHE j” dF,,(u; 4)

n(A)ljl — 0

Spatial Moments
Prediction 11



THRESHOLD METHOD

Rt[k](A) — /Bk () -E’t(u,A)-l- &,

E\ RV(4,) | RY(4,)>0 |
ﬂ"(”):P{ RP(A4 )>u || RO(4 )>0 |
t i,] t 1,J

within an “optimal” range of u-thresholds, facilitating/justifying
prediction of spatial moments by linear regression on ECDF-tails.

Kedem & Paviopoulos [1991, JASA]

Short, Shimizu, Kedem [1993, JAMet.]
Shimizu, Short, Kedem [1993, J.Met.Soc.Japan]
Shimizu & Kayano [1994, J. Met.Soc.Japan]
Mase [1996, Ann.Inst.Statistical. Math. ]
Sakaguchi & Mase [2003, J.Japan Statist.Soc.]

Threshold Method 12



INAR(1) Model: McKenzie (1985) : Al-Osh & Alzaid (1987)
— O
X, =poX,  +¢
{5 t} L1.D. innovations ; E ’ J_ {X ¢ }

th

Binomial p-Thinning: po X, | = Z Z,,

i=1

{Z f,l-} IID array, independently of {X, |

s<t

P(Z,,=1)=1-P(Z,;=0)=pe[0,]]

(p ° Xf—luXt—l )N B(Xt—D p)

0, )= B )= E{(1—p+ p-e™)' |

INAR(1) 13



Stationary Solution

{X t} (strictly) stationary < p <1 & E (gt ) <

D X ; Discrete
X, = z a-°é&,_; Self-Decomposable
Jj=0 Law

Stationary
Distribution

14



2nd Order Moments

2
,UX:E(Xt): He & G?(:Var(Xt):p',ug‘FJg
l—p l_p

ID(X)zi:(1+[D(8)j/(l+1) > 1 o ID(g)>1
H x P P

7/X(k)=C0v(Xt,Xt_k):p"“ o2
Oy (k) = Corr(Xt,Xt_k):p‘k‘ >0

] X ro p',llg‘l‘ng

T k= 7T°(1—2p-cosa)+p2)

INAR(1) Moments

15



Model Marginal or Innovation Law ?

G.(2)=Gi(2)|G,(I1-a+az)

X~P(A)=>e~P((1-a) 1)

X ~Geom(0)=>e~B(lLl-a) Geom(8)
X ~NB(p,A )= &~ Nontrivial

Model &-law so that

s (e s
ID(e)>1 & (‘9; i) o

subject to feasibility of inference and simulation.

16



Mixed Poisson Innovations
Pavlopoulos & Karlis (Environmetrics 2008; 19: 369-393)

= =Z7zl et A m=>1, x=0,1,2,---

17



A Convenient Representation

S (i) A(i)
=2 0/ Ay
=]

Qt:( t(])"”’ t(m))NM(]’pJ’”"pm)

A, = (A" A )~ (P(O,),-, P(8,))
{Qt } te”/

(V=1 =

t

independent sequences
{A } tez  of LI.D. random vectors

M

X, =ao X, , +g, —ZQ(’) (

(i)
tI+At )

18



Poisson-Binomial Convolutions

(o X, , +AV|X, ,)=(ao X, |X, )+ A" ~PB(X, ,a:)

ZAX,_; lk ) .
ﬂ.i(Z‘xt—I) Z ) ! (zxr_lkj.aZk'(j_a)x” ‘

k=

m

(Xt‘Xt—I)N ZQt(U °PB(Xt—1’a;ﬂ“i)

i=1

(X,| X, )~ mixture of m Poisson-Binomialt. v.

PH(XI,‘ = xt‘Xt—] = xt—]): ipi '”i(xt‘xr—l)
i=1

More generally, the k-step predictive/conditional law of ( X ,| X ,_,)
is a mixture of m * Poisson-Binomial r. v. with parameters determined

by o, A;, .., L., Dss ooy Dy

PB mixtures 19



TOGA-COARE Data

Cruise-1: 10 November - 9 December, 1992)

MIT-Radar (Doppler Precipitation)

Location: (2°S,156°FE) China Sea, SW Pacific Ocean
Temporal resolution (sampling frequency) 20 min.
Regular section of 184 scans: 22/11(02:01) —24/11(15:21)
Total duration of section: 61 Ar ; 20 min

Pixel SARR Marks: R=(Z/230)%3

Spatial Scales of probed subregions (centrally nested):
240, 120, 60, 32, 16, 8, 4, 2 Km

Clipping threshold levels of pixel marks:
0,1,2,5,10, 20 mm/hr

Total of 8x6 = 48 time series

TOGA-COARE
Data

20



threshold — mean [ [ [l PIX =0)  acl ITIEAT [ [ 158 P =00 acl
| Scale = 240 Km Seale = 120 Km
O men/hr 300367 97484 0232 . A5 0,000 0,823 266,17 ad62 0217 1862 i, o 0807
| mom/he =103 70600 1414 333 0.0 0810 (4940 25L=0 [R62 G620 i, b0 0847
Dmmhr BMAAL 0 S4TOG 1526 .62 ALY 1,741 (0251 =210 78 5114 010 TRA R
B 2R%.25 MGSS 1351 AT63 LG 1,756 5A.T2 11250 1.073 L85G 201 0.s23
10 mm/fer 111G 12028 [6R0 5029 Lol 0,758 2803 a2 0Es GTIR 0,255 TR
A omm e ATHES O BOTI O 1841 602 0.0a2 0,745 10,12 5a8 0 2797 1038 o413 i, 782
Scale = B0 K Scals = A2 Km
O mem/he 35305 0 0340 0477 2167 ALY .523 (1918 2504 -0.053  1.8=4 i, b 52
| men b 2575 6324 2064 6871 .39] (.76l 240 [7.36 aa87 17068 065 1, GSG
2 mm/hr 17.51 I7.096 2351 H.GEE 0AGT 0727 233 [5.95 207 21.904 0.7 670
5 ey hr 9.7 006 30110 [A5ES 0,527 0,687 .27 [1.50 285 2.=00 0837 i, 632
10 mm e 560 036 337 15A 0625 0, GG0 .71 0% L16T 35373 0.E53 (.580
M mmMr 235 1763 3822 18527 0.730  0.583 .24 SBT LA1L ATIEG .82 i, G2
Scale = 16 K Seale = B Km
O men/he 20207 10019 0316 1812 ANEN 1,762 (0277 abhll  -0G5E 1727 . 1oa i, 659
| mem/he 0046 0855 4507 28257 0,5 0,536 0185 350 LR 36541 0,820 23]
Dmmshy OBSR 0 0385 54R0 A0GTR =0 0,521 i, 00s 2008 G030 L5048 0,051 0,272
Hommdhr 03500 T30 6012 A2A10 A= .154 0,043 224 907 s0142 .05 -0
10 mmfer 0196 T34 9201 09506 REE N 156 022 2492 11790 4V ALT 0,950 -0.00a
A0 mmfr DORT LGRS DAGT 0NN 0.a7s 0345 0,005 Looo 1aadd 120,032 i, 905 S
Seale = 4 Km Seple = 2 Km
O men/he 2600 1100 -0.T28 0 LTOG 025 0,620 . G016 ganG  -08da 170 .30 .56
| mem/he 0033 LG43 TAGS 600D 0o 003 i - - - I -
D 0011 2000 13544 180,032 00an 000G i - - - I -
S 001D 2000 13504 180032 00an 000G i - - - I -
|0 e e 0005 1000 13344 180,032 0oan 0005 i - - - I -
20 mmfr i - - - I - i - - - I -




tail probability

tail probability

tail probability

tail probability

0.8

0.4

0.0

scale = 120 km, threshold=5mm/hr

0 50 100 150 200 250 300

count of pixels

scale = 60 km, threshold=1mm/hr

0.4

0.0

0.4

0.2

0.0

0 50 100 150

count of pixels

scale = 60 km, threshold=20mm/hr

OOO:AAAA
oo a
°°°eeeeoeeoeooannaaggna‘a‘oooooooooe
0 10 20 30 40
count of pixels
scale = 32 km, threshold=10mm/hr
r-Y
o a
o
° ¢

eaﬁgoocooaooaooooco
0 5 10 15 20
Figure 1 count of pixels

(Tails: MOM vs CML)

tail probability

tail probability

tail probability

tail probability

0.8

0.4

0.0

0.4

0.2

0.0

0.25

0.0 0.10

scale = 120 km, threshold=5mm/hr

0 50 100 150 200 250 300

count of pixels

scale = 60 km, threshold=1mm/hr

00 0.2 04 06

0 50 100 150

count of pixels

scale = 60 km, threshold=20mm/hr

o
8
eeA
o6
oaggnnnﬂ°°°°°°°°°°aaﬂoaaanooaooaoaae
0 10 20 30 40
count of pixels
scale = 32 km, threshold=10mm/hr
[
i (]
LIPS
Inga"?ﬂﬂae?eooagAQ
0 5 10 15 20

count of pixels

22



(a) ACF

<
i
@ ©
3 o
©
>
T W
© o
N
Q
0 5 10 15 20 25 30
lag ( x 20 minutes)
(c) 1-step predictions from one replication
0 8
[} <
X
o
S 8
(= N
>
8
o
0 50 100 150
time (x 20 minutes)
(e) 2-step predictions from one replication
0 8
[} <
X
o
S 8
(= N
>
8
o
0 50 100 150
Figure 3

time (x 20 minutes
(Case: 120 Km @ 5 mm/hr) ime (x 20 minutes)

count of pixels power density

count of pixels

(b) Spectrum

o
o
o
Te}
—
o
o
o
[Te]
ol TR ceeessanien
0.0 0.5 1.0 15 2.0 25 3.0
frequency

(d) 1-step percentile predictions from 1000 reps

o
)
o
&
3
—
o
0 50 100 150
time (x 20 minutes)
(f) 2-step percentile predictions from 1000 reps
o
)
o
&
3
—
o

0 50 100 150

time (x 20 minutes)

23



(a) ACF

<
i
@ ©
3 o
©
>
5o S
© o =T Tr~en L~ =
N
Q
0 5 10 15 20 25 30
lag ( x 20 minutes)
(c) 1-step predictions from one replication
o
Q
0
Q
X
2L o
5 9
=
3 3
o
o
0 50 100 150
time (x 20 minutes)
(e) 2-step predictions from one replication
o
Q
K%)
Q
X
2L o
5 9
=
3 3
o
o
0 50 100 150
Figure 4 time (x 20 minutes)

(Case: 60 Km @ 1 mm/hr)

count of pixels power density

count of pixels

(b) Spectrum

o
S
g
ol T
0.0 0.5 1.0 15 2.0 25 3.0
frequency
(d) 1-step percentile predictions from 1000 reps
8
3
i A
0 50 100 150
time (x 20 minutes)
(f) 2-step percentile predictions from 1000 reps
8

100 150

time (x 20 minutes)

24



Randomized Binomial Thinning

X 1s a non-negative integer-valued random variable,
P is a [0,1]-valued random variable.
(X, P) may be jointly distributed or stochastically independent.

X
PolX =) Z,(i)
i=1
: array of binary r.v.’s, which conditionally on {P = p}
{Z P (Z)},’21 are .I.D., following Bin(1,p), independently of X.

P\Zp(i))=1||P=p}=1-P{Z,(i))=0|| P=pf=p

25



E(ei.u.(pox)): E{E{ei.u.(pox) | P,X}}

¢POX(M):E{(1_P+P.ei-u)X}
D
Po(PbeX) = (PP)oX (always)

D

Po(X+Y) = (PoX)+(PoY)

if X,Y,P are mutually independent OR
if X,Y are independent conditionally on P.

26



Fractional INAR Model: X ;= B °CA. 4 + G,

{5 , } LLD. innovations: non-negative integer-valued noise

{Pt } Auto-correlated thinning process: [0,1]-valued
(PY1 {e} and (Vt)(P,e)Llo(X,;s<t)

X so that, conditionally on P,, the array
Pt o Xt_l = ZZf (l) {Z ,(i) ; i=1} 1s comprised of .I.D.
i—1 Bin(1,P,) random variables,

independently of (X, ; s <t).

P=f(a); {a}~FGNMuao’ H)

2

—d —lAd —\av a
f(a)=e z;e";e( D —,etc.€[0,1]

5
Fractional INAR(1) 1 + a 27




k-step Iteration (future to present):

k
+ _gt+k+Z[H t+k— ]] t+ki+(H})t+ijoXt

oo-step Iteration (present to remote past):

D o0 i—1
X, =¢, +Z£H Ptj]"
i=1 \ j=0

Representation of Stationary Solution! Necessary Conditions !!!
Does a Stationary Solution Exist? || |
Under What Conditions? Vo VoV

rlug = E (gt ) <®

ﬂX:ﬂg(l'l'iE(Pl'"B)jzlﬂg :></UP:E(P¢)<1
= i E(P..P)—>0, ast— o

\

Iterations - 28
Stationaritv



1-step Iteration (future to present):

E(Xm):E( t+1)+E(Pz+1 X)

ty =p, +EXE(P, o X, || B X, )i =, + E\PL X, [ =, + pppiy

U, = He Stationary
1 —u P Mean

E(X?,)=E(e?, )+ E(P., o X, ) +2E(e

t+1 t+1

JE(P,, o X,)

+1 t
O-X_I_ﬂX:O-g_l_lug_l_zlugluPluX_l_E{ {( £, o t)2|| 415X, }}
02+ 1 =07+ 4 4 240 gty + EVX P (1= P+ X2 P |

2
6)2( = e T HHr + (712, A ('u e " Hp 1) Stationary

1—(7}2) —,u}z) (1—0}2) —,u}%XI —,LIP)2 Variance

t+1

Mean & Variance 29



Overdispersion

Index of Dispersion under Stationarity

1— g1 o3 (ut, + p1p—1)
5, +8 :
l—Gi—ﬂi(P+ ) (BT (BT

1,0,
(1 — Hp )2

o,>1 & o >1-

o.21 = o,>1

g

30



E(X,. X, )=Ee 0 X,)X,)
v+ py = ppty + EXE(P, 0 X)X, || Py, X, )
= g gty + EAP X2 b= gy + (0 + 1)

t+1Xt ) + E((})Hl

= y,(1)=u,05; ACVF(1)

E(X,,X, )=E(s,X)+E(P,,0¢,)X,)+E((P,P

t t+17 t+2

t+2 t+2 )OXt)Xt)

=y Q) gl =g+ ppp gty + O+ 12 ok + 1)
= 7, Q) =giol (02 + 12 )y, (1) ACVF(Q2)

k—1 —1 k
y oK) =i g, S E[H P] o u;)E[H ej
i=1 =0 =1

’ ACVE(k > 3)

ACV(K) 31




|~ FGNueR, 6°>0, 1/2<H<]1),

ta |
then E(P..P)= E{exl{—iaf j} _ E{ex —Z_Z;:&(Wi -0 )Zj}

W HDN@O]l) & {1,>0/_
’C=[7a(|i—j)=%2((i—j|+1)2H—2(i—j)2H+(|i—j—1)2H)j

(@) = O L (t1..02)

Q. : orthogonal matrix of eigenvectas of V,

L : non—smgular lower—triangular matrix
such that V, =L L'

Calculating
E(P1...Pk) 32



The Case of FGN with u=0

{ex —Za } {ex _zwj}

TT0+24)" [ Tl+02) "
i=1 i=1

{/f >0 }ﬁzl eigenvalues of V; =%Vt
o

For t=1: ,flk -9

Hp = E(P): E(P1)_ E(exp(— af)): (1+202)_1/2

E(Pz) 1 = E(exp(—Zaf))—(l+202)
=(1+40 " —(1+207)

33



The Case of FGN with u=0

Fort=2: A =4" ; 1,=4-4"

For t=3: A =1+2-4"-9"

97247 45507 247 4 5] —8.(07 42-47 _16" ~1)

12,3 = 5

Case p=0 & t=2,3 34



0-inflated Posson innovations

P{&;zO}:pe(e_e,l) ; 0>0 ; lzll_pee(o,l)
—e
ek e—@ 9/{
— — _0._. — — . .
Ple,=ki =20l = U=p— 55
H,=1-0

o, =1-0+1-(1-1)-6° Overdispersion

0-Inflated Poisson 35



OM inference

Method of Moments Inference

_ 1 T
Hy :X:;gXt
oy, =8 =%2(XI—)_()2
=7, =1 3%, %) (x,,-X)
t=1

7x(2)=7,(2) :%TZ%‘(XI _)_()'(Xzﬂ _)_()

=7 =73 (X, - X} (x,,-X)

36



Concluding Remarks

SUFFICIENT & NECESSARY CONDITIONS FOR STATIONARITY

REMEDY INSTABILITIES OF FITTED MODEL BY INTRODUCING
W#0

SOLVE NUMERICALLY A HIGHLY NON-LINEAR 5X5 SYSTEM
OF MOM EQUATIONS

COME UP WITH ALTERNATIVE INFERENCE PROCEDURES
(other than Method of Moments)

FAREWELL
DEAR
BENJAMIN

Conclusion
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Distributions of statistics of
hidden state sequences through
the sum-product algorithm

Donald E.K. Martin, NC State Univ.
John A.D. Aston, Warwick Univ.



Outline

Introduction
Background Information

Computation of Distributions in Hidden
State Sequences

Conclusion



Introduction

e Let 0O = 0,,... , 0, be an observed
sequence
e S=S5,,...,S, Isacorresponding hidden

State sequence

* \We study inference for statistics of S
conditional on O



e States can serve as labels for O

-- Krogh (1997), Durbin et al. (1988) DNA

-- Hamilton (1989) business cycles
(may be interested in “runs”)

e States can be the true values of a noisy
observed sequence

-- McEliece (1998) transmitted codewords
-- Baxter (1982) noisy image pixels



e Past approaches to such problems:

-- determine Viterbi (most likely) sequence
and obtain the statistic from that sequence

-- sample from p(s|o)

-- Aston and Martin (2007) introduced a
Markov chain based method to compute
exact distributions for statistics of HMM
states



Background Information

 The mode
e Factor graphs
e Sum-product algorithm




The model

 \We use the discriminative model, a
conditional random field

p(s|o) ——H‘P (.,0)

V. (s.,0)=exp| D" 4 f,(s,,0)
2(©0)= [ ... ¥:(s..0)



* If each s, takes on K values then S
takes on K", and thus, in general,
computation of Z(@)=> | ] .¥.(..0) is
Intractable for large n

* We consider models with dependence
structure that allows exact inference to be
performed



Factor graphs

e Corresponding to the model Is a factor
graph F=(V,E), a bipartite graph with two
types of nodes:

-- variable nodes

-- factor nodes (with edges connecting the
functions to their arguments)

 Graph describes how a global function
factors into a product of local functions



Factor graph corresponding to the joint distribution

p(s,,..., |O) [Z(0)] ‘P4(s4,ss,o)T3(53,s4,o)‘{’2(sl,52,s4,o)‘P1(sl,o)



* Note that “generative” models such as
Bayesian networks and HMMs can be
represented by our model

Wi (St1,5,0;)
_AL

e.g. for HMMs p(s,0) =[], &S [s, )& (@ s)

Z(0)=__p(s,0)

p(sjo) = p(s,0)/Z (o)



The sum-product algorithm (SPA),
Kschischang et al. (2001)

e Operates In a cycle-free factor graph to
compute marginal functions by exploiting
the way a global function factors

 Nodes are treated as “processors” and
“messages” are sent between them

* Essentially equivalent to the “generalized
distributive law” (Aji and McEliece, 2000)
over junction trees



* A variety of algorithms in artificial
Intelligence, signal processing and digital
communications can be derived as
Instances of the SPA

-- forward/backward algorithm for HMMs
-- Viterbi algorithm (max-product semiring)
-- Interative “turbo” decoding

-- Pearl’s belief propagation for Bayesian
networks

-- Kalman filter
-- certain FFT algorithms



¥,

p(ss[0) =D p(s|o) =[z(0)] Z\P (s4,s5,o)Z\P (55,5,,0) Y ¥, (5., 32,34,0)\11 (s,,0)

~% %2

4

Z(0) =Dy, s, (S5) \ @) by (1)

Vo

/U‘P4—>S5 (85 )

/’l‘Plﬁsl (S_I. )




* A perfect elimination sequence of the SPA
IS one where marginalization can be
carried out without enlarging local domains

 More than one perfect elimination
seqguence can exist



o obtain p(s;|0) :

S; IS treated as the root of the graph
Initial messages are sent from leaves

Message sent from node to its parent after it
has received messages from its children

Hs v, () = H P ()

W, ene(s)\'P,

/u‘{’c—>sv (Sv) = Z (LPC (Sc ! O) H /usu >, (Su)j

sc\s, SLES:\S,



For a factor graph F with cycles:
 Obtain a spanning tree T

« A variable is “stretched” by including it in
variable nodes along the unique path of T
from the variable to nodes of F that can be
reached from it on a path of length two

* Delete redundant edges
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Computation of Distributions of
Statistics of a Hidden State
Sequence

* \We compute distributions of a count
statistic 6. =h(o,,..., an)e®=(¢9(l) ..... (9(‘@‘))
associated with a pattern

¢ 05,...,0, |s the order of evaluating 9.



* A sequential ordering o,...,0,=5;....,8,
IS most convenient when the pattern
has words of length greater than one

 For that case we introduce % =9(s;--.,$)
to keep track of pattern progress

o If the pattern consists of singletons, we
can evaluate the statistic in any order
(e.g. a multinomial distribution)



o Let Qx0={(4,0)"....(.6)]

e \We first obtain an co><_1 vector 7, that has
entries Pr|(d,.6,)=(a.0)"|

 Then we obtain a |®|x1 vector y, holding
probabillities for ¢, through

Vo= A7,

‘@‘xa)



 For each component 7,(@9") of 7.,
7,((0,0)") = ) Pr(s,(g,,6,)"” =(a,0)" o)
=Y p(spo)! | ((@.6)7)=(9(s).hs)) |

e The computation is similar to computing Z(0)
(we also must keep track of the value of the

statistic)



e Vectors ¢, serve as indicators of the value
of the statistic

(DO :(1 O O)T ¢n p— A A oo Aalwo

where A, are @wX@ matrices with a one in
the (i, j) position if and only if @.6)" —(,6)
with the occurrence of o, .

(1)



» Using our representation of p(sjo) we obtain:

ZAGH .. -ZAQ (HC ¥ (s, o)) ?,

7 :Z(O)_lZS:(HC\Pc(SC’O))(szlAffk )% == iH Y (s.,0)



* When o,,...,0, IS a perfect elimination
sequence of the SPA, factors can be
efficiently distributed throughout sums

ﬂq—)‘l’c(a[’qt’gt): H llivl\Pd—)o't (Gt’qt’a[)

Y, ene(op )\,

[lTC—>au (O-u ! qu ! eu) = z [\Pc (SC ! O) H Asr ﬁsr—>‘1’c (Sr ! qr ! er)j

s.\oy, S, €S \oy,

j;n :Z(O)_l Z H ASU (H‘Pdene(su)[l\}'d—ﬁu (Su’qn’en))

s et 5, esl

Vo =NJ,



Examples

e Let 9t2(771t’“-177|<t)

p(|0) [ Z©O)] (515,155,510, (S5, 55,5455, 00 P (S, 55155, 5:0)

xW¥,(S,,5,,S,,S,,0)¥:(S;, S, S5: Sy, 0)

 No pattern progress is needed (patterns are the
symbols s () g (¥))

n+ K -1
a):‘G)‘E
")



 The matrices A, for the transitions based
on o, =s" have a one in location (i.j) if
column j corresponds to (7 i1v--- 7 pyreee sk )

and row i t0 (7 gy Mgy + L ik )






 Passed messages:
Ay e, (55,6) =1 (1,d)=(21),(63),(93),(85),(105)

Hy_ .. (s, 3) = Z AsloAssqjs(SwS?’58’51010)900

Sg 1510

IZAP4—>SW (S**’*’el) :\114(32,53,54,37,0)

IZIS*H*—>‘P1 (S****’ 93) = /&‘{’4—>s,m (S****’ (91)/&‘{15—5“** (S****’ 93)

:[l‘Pl—>sM (Senes 05) = Z A51A57LI’1(51, S21 33, 54’0)[151—»1'1 (s, 91)/}5%4111 (S, 0) = :&sm—w2 (Sers 05)

:[l‘Pz—>s** (S**’ ‘97) = Z AszAsgLPZ (SZ ! S’3’ 84’ SS ! O)lasw—wl'2 (S***’ ‘95)

Sy,53

ﬂwgas**(s**"gg) = Z AsﬁAsgLP3(34’35’56’39’0)

S 159

7/10 =7 (0)_12 Z A54As5la‘P2—>s** (S**’HY):&‘Psas** (S**,Qg)

Sy Ss



e Consider the computation of the
distribution of the number of overlapping
occurrences of L, =111 in s=(s,,....s;)

Let p@sjo)=[Z©)] ¥, (s, 5.0 W;(S:,5,,0) ¥, (5,,5,,5,,0)¥, (5,,0)



13(50,5,:53,8,,5;,0) =¥, (8,8, 0)¥;(5,, 83, 0) ¥, (8,8, 5,,0)



o Transitions of (a.9) values (for A matrices)

(9,6) after one  after zero
g0 1,0 g0
El,o)) gll,O)) 58’03
(11,0) (1111) (¢,0)
(4.1) (1,1) (¢.1)
(111,1) (1112) (¢.1)
(111,2) (111,3) (¢:2)



e |f states are listed in the order

(£,0) (1,0) AL10) (&,1) (1.1) ML) (&,2) 1129 U113

(111000000
000111000
000000110

000000001,




 To reduce the number of 4 values, we
Introduce an Aho-Corasick automaton

D=(Q, %, 0q,6T)
Q set of prefixes of pattern

do, :Q x ¥y - Q such that 5,(9,a) is
the longest suffix of ga thatisin Q

terminal states T are words of the pattern

e The automaton is then minimized using the
Hopcroft (1971) algorithm



e Supposed that we are interested in the
number of overlapping occurrences of the
Chimotif | =GNTGGTGG, Ney={ACGT|

 The are 30 pattern prefixes, but only 10
states in the minimal automaton

AC,T A,C

A,C - ’
2 <
A ACT

— I ACT

‘ G ACT - ° - o e ° ) o
A,C
G T
ACT T

3

G G



Conclusion

* \We have given a method to compute exact
distributions of statistics of hidden state
seguences

 The method can be applied to a variety of
models, both discriminative and generative

* For certain elimination orders, computation
IS as efficient as computing marginals



Future work

 Analyze data sets

« Applications, e.g. in information/coding
theory: can we facilitate decoding based
on new decoding criteria?

« Approximate inference (bounds on
deviation from true distributions?)
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Science News

Study of eye movements

& Share +'Blog @ Cite

Eye-Movement Study Shows Glimpse Of How Brain Plans Movement

ScienceDaily (Jan. 11, 2001) — January 11, 2001
— Researchers are getting closer to understanding
haw the brain is able to hold a moving image on the
retina, yielding smooth, relatively stable images of
the moving abject. Howard Hughes Medical Institute
(HHMI) researchers have discovered that a region of
the brain that was formerly believed to control eye
movement is actually involved in the high-level
planning of movement.

Their findings offer new insight into

See also: how the area in the brain's motor
Health & Medicine cortex adjusts eye movement to

- Eye Care track ob_Jects_ s_aythe researchers.

- Psychology And their experimental approach—

Research which involves measuring and
« Nervous System altering via electrical slimul_alioﬂ the
tiny eye movements by which rhesus

Mind & Brain monkeys track a spot of light—

= Perception
= Neuroscience

provides a precise, quantitative
approach to studying the basic

Ritaja Sur and Benjamin Kedem
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Study of eye movements

Science News

& Share ¢ Blag & Cit

Eye Movement Studies To Help Diagnose Mental lliness

ScienceDaily (June 18, 2003) — Researchers at the

University of llinois at Chicago are studying subtle
abnormalities in eye movements that may one day
be usedto diagnose psychiatric disease.

Imeqularities in how the eyes track a

See also: moving object reflect defects in the
Health & Medicine  Meural circuitry of the brain and
« Eye Care appear to corespond with particular
« Tispnsas And types of mental disorders.
Conditions Schizaphrenic patients, for example,

+ Mental Health

Resear:

Mind & Brain
+ Intelligence
+ Disorders and

have difficulty keeping their eyes

h focused on slow-moving objects.
With new technolagy, these
abnormalities can be measured
precisely and compared with normal
pattems.
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Mental lliness Symptoms

Find Info On Mental Health & Diagnosing
Neurological Symptoms
www.wyethneuroscience.com

Get Bulimia Treatment
Providing Quality Care For Over 20 Yrs. Call Us Fo

Classification of Eye Movement Data



Study of eye movements

Background

e Land and Mcleod (2000) - For a successful hit cricketers
fixate on future points of contact of the ball and the ground.

@ Reina and Scwartz (2003) studied monkey's fixation points in
a repeated drawing task.

e Mataric and Pomplun (1998) studied movement imitation and
showed that people tend to fixate on end effectors.

Ritaja Sur and Benjamin Kedem Classification of Eye Movement Data



Study of eye movements

Questions

@ What visual inputs are captured when we intend to imitate a
movement?

@ What are the computations performed by the brain in
movement imitation?

@ Whether there is any difference when a person intends to
imitate?
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Study of eye movements

Data Description

@ The eye movement data was obtained from the work of Lior
Noy.

@ Eye gaze as a response to the motion of the hand was

recorded using a eye tracker.

Coordinates of the wrist, elbow and shoulder were recorded.

Number of human subjects = 7.

Number of distinct hand movements = 10.

Number of conditions (Watch and Imitate) = 2.

Data recorded in x- and y- coordinates.

Length of time series ranges from 801 (6.68s) to 1609
(13.41s) data points.

e r-coordinate r; = (x2 + y?)

1/2 considered for analysis.
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Study of eye movements
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Figure: x- coordinate for Subject 5 Movement 2 (Watch).
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Study of eye movements

y- coordinate

o 200 400 600 800 1000 1200

Figure: y- coordinate for Subject 5 Movement 2 (Watch).
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Study of eye movements
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coordinate vs y- coordinate for Subject 5 Movement 2
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Study of eye movements
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Figure: Time series plot and Autocorrelation plot of the r- coordinate for
Subject 5 Movement 2 (Watch).
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Figure: Time series plot and Autocorrelation plot of the differenced r-
coordinate for Subject 5 Movement 2 (Watch).
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Study of eye movements
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Figure: Partial Autocorrelation plot of the differenced x- coordinate for
Subject 5 Movement 2 (Watch).
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Discrimination using HOC

Non-parametric approach using HOC

Let V be the difference operator defined as.
th = Zt — thl

In general, for k=0, 1, 2,..., VkZ, is given by

k

VEZe =" (jf)(—l)fzt_j

Jj=0

where V°Z, = Z,. For each k =1,2,...., we further obtain the binary
clipped process X;(k) and the HOC counts Dy.

1, ifvk1lz, >0
X k — b -
(k) {0, if Vk-1Z, <0
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Discrimination using HOC

HOC continued

Z[xt ~ Xea(R)P

D if k=1

AkE Dk—Dk—l ifk:2,3,....,K—1
(N—-1)—Dk_1 ifk=K
Distance measure from white Gaussian noise:

K

2= (Ax — mi)?

m
k=1 k

where my= E(Ay) can be obtained using

EID] = (N - 1)f; + —sin (“5)]
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Discrimination using HOC

Subject 1, Movement 9

700 T T T T T T

-
(]
asor 47 e Watch §
4 —e— Imitate

400 White noise (WN) 1
" = = =WN (lower bound)

3501 — — —WN (upper bound) _

300 1 1 1 1 1 1
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k
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Discrimination using HOC

Application to eye data

@ For each eye signal, the calculations of the Dy's are based on
a 751-point segments, corresponding to t = 50,51, ...., 800.

@ The respective > distances from white noise were computed
using Dy's for k =1,2,...,8.

o For each subject, the average 1 values were computed from
the 10 movements.

o To test the hypothesis that )2 values differ significantly under
the watch and imitate conditions for each subject, wilcoxon
rank-sum test was performed.

@ To get further insight from the 70 cases for each of the two
conditions, each of the 70 time series was divided into two
equal parts. Essentially, this implies as if the subjects were
viewing 20 movements instead of 10.
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Discrimination using HOC

Results using 12 Statistic

Table: r- Average v? distance from white noise.

Subject  Watchl Imitatel Hp: W1 =11 Watch2 Imitate2 Hp: W2=12
1 53.317 85.527 0.0116 33.237 50.629 0.0037
2 37.064 48.627 0.1088 27.884 32.373 0.1917
3 92.091 66.617 0.0526 52.357 44.101 0.0637
4 75.271 79.421 0.2894 40.421 46.265 0.1917
5 51.149 50.656 0.4559 32.863 33.162 0.3490
6 105.241 53.506 0.0014 60.175 34.186 0.0026
7 43.894 122.453 1.08E-05 26.643 74.597 < 0.005
Average 65.43 72.40 39.08 45.04
Median 53.2 66.62 33.24 44.10
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Discrimination using HOC

Subject 6, Subject 7
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Classification using HOC

Distance measures - 1

Let x; and y; be two zero mean stationary time series of length n.
The various distance measures considered are:

@ Euclidean Distance:

devct(x,y) =

@ Distance based on estimated autoregressive weights:

o0
dar(x,y) = Z(ﬁﬁx — Rjy)?
=1
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Classification using HOC

Distance measures - 2

@ Distance based on estimated autocorrelations:

dacru(x,y) = \/(Px = 1) (B — )

dacre(x,y) = \/(ﬁx = Dy)Qpx — Py)
@ Distance based on periodogram coordinates:

[n/2]
dnp(x,y) = Z[’VPx(Wj) — NPy (w;)]?
[n/2]
dine(x,y) = Z[/Og/VPx(Wj) — logNPy, (w;)]?
EIN ,
R
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Classification using HOC

Distance measures - 3

@ Distance based on HOC:

K
dpetea(%,y) = | D_(Bkx = Diy)?
k=1

K

dp(x,y) = Z(Dk,x — Dy y)?
k=1

Ritaja Sur and Benjamin Kedem Classification of Eye Movement Data



Classification using HOC

Simulation study

e Simulated 1000 replications of AR(0.3) and AR(0.4)
processes.
@ Length of each time series = n.

ACFU, ACFG calculated for lag L.

Q is a diagonal matrix in ACFG with geometrically decaying
weights with p = 0.05.

Clustering algorithm - Complete linkage (hierarchical) and
K-means (non-hierarchical).

o Calculate missclassification percentages.
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Classification using HOC

Table: Misclassification Percentages in Hierarchical clustering for
classification of AR(0.3) and AR(0.4) processes.

n EUCL AR L ACFU ACFG FREQ NP LNP KL Delta D
100 50 50 5 45 47 LOW 49 50 50 42 44
8 46 47 HIGH 50 50 45
10 48 47 ALL 50 50 46
25 45 49
200 49 46 5 46 47 LOW 49 49 50 42 47
8 45 50 HIGH 50 50 50
10 47 49 ALL 50 50 44
50 46 47
100 50 44
500 45 50 5 34 36 LOW 50 49 43 35 34
8 46 43 HIGH 50 50 50
10 47 40 ALL 50 49 43
50 37 39
100 50 45
250 50 38
1000 47 37 5 45 38 LOW 49 50 42 18 34
8 44 39 HIGH 50 50 49
50 38 42 ALL 50 50 49
100 39 39
250 49 41

Ritaja Sur and Benjamin Kedem Classification of Eye Movement Data



Classification using HOC

Non-Hierarchical Clustering - K-Means

Table: Misclassification Percentages in Non-Hierarchical clustering
(K-Means) for classification of AR(0.3) and AR(0.4) processes.

n EUCL AR L ACFU FREQ NP LNP Delta D
100 50 33 5 39 LOW 48 49 40 44
8 41 HIGH 48 39
10 41 ALL 48 49
25 42
200 50 24 5 34 LOW 48 50 36 42
8 37 HIGH 49 35
10 38 ALL 48 50
50 41
100 43
500 50 14 5 21 LOwW 47 47 26 34
8 23 HIGH 46 20
10 25 ALL 47 46
50 29
100 31
250 31
1000 50 5 5 9 LOW 48 49 16 16
8 9 HIGH 24 10
50 9 ALL 20 10
100 9
250 1
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Classification using HOC

Clustering

@ Consider a particular movement.

@ Corresponding to each movement, there are eye gaze time
series of seven subjects under Watch condition and seven
under imitate condition.

Use Delta metric for classification.
Use Complete linkage algorithm.
1,2,3,...,7 correspond to Watch condition.

e 6 o6 o

8,9,10,...,14 correspond to Imitate condition.
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Height

Figure:

Cluster Dendrogram

400
1
14

300
1

200
1

100
1

hclust (*, "complete™)

Classification of eye data for movement 1 using the Delta metric.
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Cluster Dendrogram
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Figure: Classification of eye data for movement 4 using the Delta metric.
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Classification using HOC

Summary

@ Based on the v distances, we conclude that in some cases
the individuals (Subjects 1, 6 and 7) viewed the movements
differently under the two conditions.

@ Using the HOC measure in clustering, it can be said that
Subject 7 viewed the movements differently under the two
conditions.

@ The results obtained from clustering do not in general give a
clear picture.
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o Kedem, B.(1994).Time Series Analysis by Higher Order
Crossings. |EEE Press,Piscataway, N.J.
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Introduction A Historic Review of Biased Sampling Models
Asymptotic Theory for @ and G Semiparametric Density Ratio Model

Data Analysis Estimation

Length-biased Sampling

Sampling Scheme: Lengths of items are distributed according to
the cdf G (to be estimated). The probability of selecting any
particular item is proportional to its length, then the lengths of
sampled items are distributed according to the length-biased cdf

Fo) =1 [ " 4dG(), y > 0, )
K Jo

where p = [ xdG(x) < oc.
The Nonparametric maximum likelihood estimator (NPMLE) for
G was obtained through empirical likelihood.
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Introduction A Historic Review of Biased Sampling Models
Asymptotic Theory for @ and G Semiparametric Density Ratio Model

Data Analysis Estimation

Biased Sampling/Selection Bias:

Vardi[1985] and Gill, Vardi and Wellner[1988] considered the
following biased sampling model by assuming general weight
functions

Fi(y) = W;(G)™! /y wi(x)dG(x), j=1,...,m, )

—00

where the normalization constant W;(G) = [ w;(x)dG(x).

NPMLE for G was obtained by combining information from
several independent samples, and was shown asymptotically
efficient.
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Introduction A Historic Review of Biased Sampling Models
Asymptotic Theory for @ and G Semiparametric Density Ratio Model

Data Analysis Estimation

Case-control Study: (Prentice and Pyke[1979])
Suppose that m disease groups are defined. Let D = j denote the
development of the jth disease, and let D = 0 indicate the
disease-free group. The probability that an individual with
characteristics x develops disease D = j can be specified in terms
of a logistic regression model as

P(D = jlx) = exp(q; + G/x)/ Z exp(a; + Bx). 3)
i=0
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Introduction A Historic Review of Biased Sampling Models
Asymptotic Theory for @ and G Semiparametric Density Ratio Model

Data Analysis Estimation

Case-control Study: (Prentice and Pyke[1979])
Suppose that m disease groups are defined. Let D = j denote the
development of the jth disease, and let D = 0 indicate the
disease-free group. The probability that an individual with
characteristics x develops disease D = j can be specified in terms
of a logistic regression model as

P(D = jlx) = exp(q; + G/x)/ Z exp(a; + Bx). 3)
i=0

Formula (3) leads to the density ratio model

P(x | D =j)/P(x| D = 0) = exp(aj + fix).
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Introduction A Historic Review of Biased Sampling Models
Asymptotic Theory for @ and G Semiparametric Density Ratio Model

Data Analysis Estimation

Case-control Study: (Prentice and Pyke[1979])

Suppose that m disease groups are defined. Let D = j denote the
development of the jth disease, and let D = 0 indicate the
disease-free group. The probability that an individual with
characteristics x develops disease D = j can be specified in terms
of a logistic regression model as

P(D = jlx) = exp(q; + G/x)/ Z exp(a; + Bx). 3)
i=0
Formula (3) leads to the density ratio model
P(x| D =j)/P(x| D =0)=exp(a; + (x).

Let g;(x) and g(x) be the densities of the jth group the
disease-free group respectively,

8i(x) =exp(of + Bix)g(x), j=1,...,m. @

Guanhua Lu Semiparametric Density Ratio Model



Introduction A Historic Review of Biased Sampling Models
Asymptotic for @ and G Semiparametric Density Ratio Model

Data Analysis Estimation

Recent Extensions
Gilbert, Lele & Vardi[1999] applied the selection biased model
for assessing from vaccine trial data how efficacy of an HIV
vaccine varies with characteristics (genotype and phenotype) of
exposing virus.
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Asymptotic Theory for @ and G Semiparametric Density Ratio Model

Data Analysis Estimation

Recent Extensions

Gilbert, Lele & Vardi[1999] applied the selection biased model
for assessing from vaccine trial data how efficacy of an HIV
vaccine varies with characteristics (genotype and phenotype) of
exposing virus.

Qin & Zhang[1997] and Zhang[2000] considered the two-sample
case, and studied the asymptotic theory. A Kolmogorov-Smirnov

type statistic was constructed for testing the goodness of fit of
model (4).
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Introduction A Historic Review of Biased Sampling Models
Asymptotic Theory for @ and G Semiparametric Density Ratio Model

Data Analysis Estimation

Recent Extensions
Gilbert, Lele & Vardi[1999] applied the selection biased model
for assessing from vaccine trial data how efficacy of an HIV
vaccine varies with characteristics (genotype and phenotype) of
exposing virus.
Qin & Zhang[1997] and Zhang[2000] considered the two-sample
case, and studied the asymptotic theory. A Kolmogorov-Smirnov
type statistic was constructed for testing the goodness of fit of
model (4).
Fokianos et al.[2001] studied model (4) based on multiple
samples for one-way layout with the distortion function x
replaced by a more general form 4(x) and designed test for
homogeneity among different samples.
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Estimation

Data Structure: Suppose we have m + 1 independent samples,

Xo = (x01, --- 7x0n0)/ ~ g(x)
Xy =(x, oo X)) ~gi1(x)

XK = (xmla cee 7xmnm), o~ gm(x)- )

Xy is referred as the reference sample with unknown distribution.
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Estimation

Data Structure: Suppose we have m + 1 independent samples,

X() = (X()l, ... ,X()no)l ~ g(x)
Xi= (i, oo Lxim) ~gi(x)
X = (xmla cee 7xmnm), o gm(x)- )

Xy is referred as the reference sample with unknown distribution.
Density Ratio Model:

8i(x) = exp(ej + Bih(x))g(x), j=1,...,m, (6)

where ¢ is a scalar, 3;is ap x 1 vector, h(x) isap x 1
predetermined distortion function.
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Data Analysis Estimation

Example 1. (Normal Distribution)
Xj ~ gj(x) = N(wj, sz), Jj=0,1,...,m. The weight function

wilxlay, B) = g(x)/go(x) = exp(a + G;(x, x*)"),
aj = log(oo/oy) + 4t} /(207) = 15/ (205),
B = (wo/os — /o7, 1/(208) — 1/(207))'.

The distortion function
h(x) = (x,x%)".
h(x) degenerates to x? if y1; = 0, and weight functions reduce to

wj(x) = exp(q;j + Bix?).
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Estimation

Example 2. (Gamma Distribution)

Xj ~ gj(x) = Gamma(c,;, 8y), j=0,1,...,m with a common
scale parameter 3,.
The weight function

wi(xlaj, B;) = gj(x)/go(x) = exp(q; + Bjlog(x)),

R0 4 (Do) ~ Tore) o8 By,
(avy)

Bi = =

o = log——= T

The distortion function is

h(x) = log(x).
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Estimation

Example 3. (Log Normal Distribution)

X; ~ gj(x) = LN(aj,0?), j=0,1,...,m with a common o>

parameter.
The weight function

wi(xlag, 0) = gj(x)/go(x) = exp(ey + fjlog(x)),

2 2
Ho — Hj o — [
(aJUBJ) — ( 20_2 - ) 0_2 J)‘

The distortion function is

h(x) = log(x).
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Estimation

Parameters: a = (a,...,am), 8= (0,-..,0,),

0 _ (a',,@’)’.
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Preparation for Estimation

Parameters: a = (a,...,am), 8= (0,-..,0,),

0 _ (a',,@’)’.

Pooled Sample: t = (1,...,t,) = (X{,X],...,X,,)', where
n = ny+ny + - - - + n,, the total sample size.
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Data Analysis Estimation

Preparation for Estimation

Parameters: a = (a,...,am), 8= (0,-..,0,),

0 _ (a',,@’)’.

Pooled Sample: t = (1,...,t,) = (X{,X],...,X,,)', where
n = ny+ny + - - - + n,, the total sample size.

Empirical Likelihood:

Hp, H Hexp a; + Bih(x;)), (7)

i=1 j=1i=1

where p; = dG(t;) is the mass at #;.
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A Profiling Procedure for Estimation

For fixed €, maximize only the product term [[_, p; from the
empirical likelihood subject to the m + 1 constraints

Zpi =1, Zpi[wj(ti) - 1] =0,j=1,...,m, ®)
i=1 i=1

where the weights w;(t) = exp(a; + G/A(t)), j=1,...,m.
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Data Analysis Estimation

A Profiling Procedure for Estimation

For fixed €, maximize only the product term [[_, p; from the
empirical likelihood subject to the m + 1 constraints

Zpi =1, Zpi[wj(ti) - 1] =0,j=1,...,m, ®)
i=1 i=1

where the weights w;(t) = exp(a; + G/A(t)), j=1,...,m.
Solve p; by applying the method of Lagrange multipliers,

m

pi=(n+> Nwit)—1)7" i=1,....n. ©)
j=1
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Estimation

Substituting p;’s back into (7), the profile log likelihood as a
function of 6 only,

/(6) = —nlogny— Zlog[l + piwi(t) + - - + pmwm(t))
i=1
+ZZ (o + Blh(x;)).- (10)
j=1 i=1

Guanhua Lu Semiparametric Density Ratio Model



Introduction A Historic Review of Biased Sampling Models
Asymptotic Theory for 6 and G Semiparametric Density Ratio Model

Data Analysis Estimation

Substituting p;’s back into (7), the profile log likelihood as a
function of 6 only,

((0) = —nlogng— Y log[l + piwi(t:) + -+ + pmwm(ti)]
i=1
+3 ) (0 + Bih(xi)). (10)
j=1 i=1

6 obtained from the score equations,

ov piw;(ti)
—_— = +n =0
50éj Z Zk 0 PkWk (t:) !

i

o piw(ti)h h(x) =0. (11
B sz Opka(tl)Jr; () =0. (D
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Estimation

The solution of the score equations gives the MLE 8 = (&', 3 ),
and consequently by substitution also

1 1
Pi=—" . — (12)
no > o pjexp(&; + Bih(t)
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Estimation

The solution of the score equations gives the MLE 6 = (&', B/)’ )

and consequently by substitution also

1 1
Pi=—" . — (12)
no > o pjexp(&; + Bih(t)

The estimator for G

Gt) = zn:ﬁil(tigt)
i=1

n

_ l.z i<t 1)
no = >0 piexp(d; + Bih(t)
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Outline

Asymptotic Theory for 0
Asymptotic Theory for G(¢)
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Asymptotic Theory for 8 and G
Data Analysis

Asymptotic Theory for é

Asymptotic Theory for G(t)

The first and second moments of 4(z) with respect to each
sample are finite,

/ h(E)w ()G (1) < oo, / ROK (Ow(dG(1) < o0, (14)

j=0,1,...,m.
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Asymptotic Theory for 8 and G

Asymptotic Theory for 9
Asymptotic Theory for G(r)

Data Analysis

The first and second moments of 4(z) with respect to each
sample are finite,

/ h(E)w ()G (1) < oo, / ROK (Ow(dG(1) < o0, (14)

j=0,1,...,m.

Sample fractions p; = n;/ng, j =0,1,...,m are finite and
remain fixed as the total sample size
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Asymptotic Theory for 6
Asymptotic Theory for G(1)

Taylor expansion of 94(8) /88 at "true" 6,

aL(8)  04(8y) 826(0*)

0="26 = a8 062

(6 — 60), (15)

where 0* is between 0 and 6.
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Asymptotic Theory for 8 and G

Asymptotic Theory for 9
Asymptotic Theory for G (1)

Data Analysis

Taylor expansion of 94(8) /88 at "true" 6,

_ aL(8)  04(8y) . d%0(6%) i

0 00 00 302(

—0y), (15)

where 0* is between 0 and 6.
Provided that S,(8) = 62/(8)/96? is positive-definite,

V(0 —80) = — [%Sn(o*)] i
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Asymptotic Theory for 8 and G

Asymptotic Theory for é
Asymptotic Theory for G(r)

Data Analysis

Taylor expansion of 94(8) /88 at "true" 6,

_ 9U®) _ 9U8y) 1" 4

0 00 00 302(

—0y), (15)

where 0* is between 0 and 6.
Provided that S,(8) = 62/(8)/96? is positive-definite,

. 1 -1
Vi@ - o) = - [1s,07)] -
Under the density ratio model (6)
Eg, (04(6)/06)*  —Eg,S,(6)

since contributions to the score statistic 9¢(6) /00 from
individual samples do not in general have mean zero.
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Asymptotic Theory for 8 and G
Data Analysis

Asymptotic Theory for é

Asymptotic Theory for G(t)

Derive the structure of limit matrix —%Sn 4308
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Introduction
Asymptotic Theory for 6 and
Data Analysis

Asymptotic Theory for é

Asymptotic Theory for G(t)

Derive the structure of limit matrix —%Sn 4308

Derive the covariance matrix of the score statistic azg@o).
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Asymptotic Theory for 6 and
Si

Asymptotic Theory for é

Data Anz Asymptotic Theory for G(r)

Derive the structure of limit matrix —%Sn 4308

Derive the covariance matrix of the score statistic agéo").

Prove the strong consistency of 6 as an estimator of 6.
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Introduction
Asymptotic Theory for 6 and
Si

Asymptotic Theory for é

Data Anz Asymptotic Theory for G(r)

Derive the structure of limit matrix —%Sn 4308

Derive the covariance matrix of the score statistic agéo").

Prove the strong consistency of 6 as an estimator of 6.

Formulate the asymptotic normality of \/n(6 — 6j).
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Asymptotic Theory for 0
Asymptotic Theory for G (1)

Notation

[ wow
A]J (

> ko PkWi(1)
[ i@y (Oh()R @)
=7 = / kaio prwi(t)

B = Bls) = [ wOh0)dG0) B [wohor (0d60)
Vi = Var(h(x;))
_ / wh(i)H (1)dG (1) — / h(H)w,dG(2) / H (1)w,dG (1)

= E - EE],

_ [ wi)wy (D)h(2)
dG(t), Bjy = SO dG(t)

dG(1)

where B and Ej are p x 1 vectors, and Cjy, Ej and Vj are all p x p
matrices.
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Asymptotic Theory for 8 and G gt Wiewwy i ()

Asymptotic Theory for G(r)

Notation Cont’d

A= (Aij)mxma B = (Bij)mem7 C= (Cij)mpxmp
p =diag(pi, -\ Pm)mxm

E, - 0 E, - 0
0 Em mpxm 0 m -/ mpxmp
1 1 4] 0

L, = : .o V= : o 3
L) 0 - Vi ) s

where 0 is ap x 1 vector of 0’s, and 0 is a p x p matrix of 0’s.
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Asymptotic Theory for 8 and G
Data Analysis

Asymptotic Theory for 9

Asymptotic Theory for G(r)

Structure of the Limit Matrix

1 S11 512>
S = — : 16
2 k=0 Pk ( Sa1 Sa to
where

S = p—pAp
Si2 = pE —pB(p®1,)
S0 = Sp=Ep—(p®1,)Bp
Sn = (POL)E—(pRL,)C(pR1I,). (17

I, is the p x p identity matrix, ® denotes the kronecker product.
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Asymptotic Theory for 8 and G

Asymptotic Theory for é
Asymptotic Theory for G(r)

Data Analysis

Structure of the Covariance Matrix

- () ()
V/n 08 Yheolk \ A Axn )
At = pAp — pApAp — plup + pAplup + plupAp
—pAplupAp
A = pAE(p®1,) — pApB (p®1,) — pluE (p © 1)
+pAPLLE (p @ 1,) + plupB (p @ I,) — pApl,,B'(p ® 1)
Ay = A= (p®1L,)EAp — (p@1,)BpAp — (p @ I))El,p
+(p ® Ip)ElypAp + (p © 1) Bplup — (p ® I,)Bl,pAp
Ap = —(p®1,)C(p&1,) — (p®1,)BpB (p®1,)
+(p®L,)BE(p®1,) + (p@L,)EB (p@ 1) + (p® 1)V
—(p @ L)ELLE (p@1,) + (p @ 1,)BpluE'(p ® 1)
+(p® I))ELupB'(p @ 1,) — (p @ I,)BplupB'(p @ 1)
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Asymptotic Theory for 8 and G
Data Analysis

Asymptotic Theory for 9

Asymptotic Theory for G(r)

The limit matrix S and the covariance matrix A is connected by
A = Su—Su(lx+p ")Su
Ay = Sp—Suln+p ")Si2
Ay = Sy —Su(ln+p ")Su
Ayp = Sp—Suln+p ")Si2
Therefore, we have
def - L,+p ' 0
def 151 _ o1 _ m
»EL s AT =8 ;pk( a 0). (18)
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Asymptotic Theory for 8 and G

Asymptotic Theory for 9
Asymptotic Theory for G(r)

Data Analysis

Suppose that the density ratio model (6) and the Assumption (14)
hold, and S is positive-definite, then

the solution 6 to the score equation system (11) is a strongly
consistent estimator for 6.

asn — 0o,

a—«
ﬁ( 5.3, ) % N 1ym(0, %), (19)

where ¥ = S~1AS L.
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Data Analysis

Asymptotic Theory for Q
Asymptotic Theory for G(t)

A Brief Review of Empirical Process

Let Ty, ..., T, be areal-valued random sample from a distribution
function F.

1 n
1=

1 n
Fn(t) — PnI[x<t] — ; ZI[Ti<t]'
i=1
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Asymptotic Theory for 6 and
Data Analysis

Asymptotic Theory for Q

Asymptotic Theory for G(t)

Consider F,(t) as a random function F,(z,w).

|[Fn = Floo == 0

under the supremum norm |F,, — F|o, = sup|F,(t) — F(1)|.
t
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Asymptotic Theory for Q
Asymptotic Theory for G(t)

Consider F,(t) as a random function F,(z,w).

|Fn_F|ooﬂ>O

under the supremum norm |F,, — F|o, = sup|F,(t) — F(1)|.
t

Vi(F,— F) -5 Gp

in the Skorohod space D[—o0, 0o|. The Brownian bridge G has
mean 0 and covariance

EGr(t)Gr(s) = F(t As) — F(t)F(s).
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Asymptotic Theory for Q

Data Ana Asymptotic Theory for G(t)

Define the empirical process of the reference sample:

G(t) — % Z:lil I[X(),'<l‘] .
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Asymptotic Theory for 6 and
Data Analysis

Asymptotic Theory for Q

Asymptotic Theory for G(t)

Define the empirical process of the reference sample:

G(t) — % Z:lil I[X(),'<l‘] .

Approximation: G(t) ~ H;(t) — Ha(t) uniformly in .
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Asymptotic Theory for 8 and G

Asymptotic Theory for Q
Asymptotic Theory for G(t)

Data Analysis

Define the empirical process of the reference sample:

G(t) — % Z:lil I[X(),'<t] .

Approximation: G(t) ~ H;(t) — Ha(t) uniformly in .

Decomposition:

Va(G(1) = G(1) = vn(G(r) — G(1) + Va(G(r) — G(1))
= Vn(Hi(1) = G(1) — Ha(1)) + Vn(G(1) — G(1)).
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Introduction
Asymptotic Theory for 8 and G

Asymptotic Theory for Q
Asymptotic Theory for G(t)

Data Analysis

Define the empirical process of the reference sample:

G(t) — % Z:lil I[X(),'<t] .

Approximation: G(t) ~ H;(t) — Ha(t) uniformly in .

Decomposition:

Va(G(1) = G(1) = vn(G(r) — G(1) + Va(G(r) — G(1))
= Vn(Hi(1) = G(1) — Ha(1)) + Vn(G(1) — G(1)).

Covariance Structure and Finite-dimensional Convergence.
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Asymptotic Theory for 8 and G

Asymptotic Theory for Q
Asymptotic Theory for G(t)

Data Analysis

Define the empirical process of the reference sample:

G(t) — % Z:lil I[X(),'<t] .

Approximation: G(t) ~ H;(t) — Ha(t) uniformly in .

Decomposition:

Va(G(1) = G(1) = vn(G(r) — G(1) + Va(G(r) — G(1))
= Vn(Hi(1) = G(1) — Ha(1)) + Vn(G(1) — G(1)).

Covariance Structure and Finite-dimensional Convergence.

Tightness.
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An Approximation of G(t)

Define

n

I(t; <)
ng > o pwi(ti; o, Be)
=l

Assume H, () = H,(t;8y). G(1) is a realization of H,(z; ) at 6.
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Asymptotic Theory for G(t)

An Approximation of G(t)

Define

n

I(t; <)
ng > o pwi(ti; o, Be)
=l

Assume H, () = H,(t;8y). G(1) is a realization of H,(z; ) at 6.

As n — oo, we have, uniformly in ¢

0 : 0 a.s. i)

—Hla(é;. e =, gz(ii g_wf&))

OH\(5:60)  as. _ pon WGV <1)
o3 B =1 | S )

dG(y)

dG(y).
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Asymptotic Theory for 8 and G

Asymptotic Theory for Q
Asymptotic Theory for G(t)

Data Analysis

Denote A() = (A1(1), ..., An(t)), B(t) = (BL(1), ..., Bl (1))

~

G(1) has an approximation uniformly in ¢,

G(t) = Hi(1) — Ha(1) + Ry (1),

where H|(t) is defined as before, and

. 0¢(60)
H) = (K0 B 0een))s | iy | @0
B

and the remainder term R, (¢) satisfies
SUP_ oo <r<oo [Rn(1)| = Op(”_l/z)-
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Asymptotic Theory for Q
Asymptotic Theory for G(t)

Covariance Structure

Notice that Eg, [H1 (1) — G] = 0, Eg, [Ha(1)] = 0,
Cov | VA(H (1) ~ G() ~ Ha(0). Vi(E(5) - Gls) — )
— B0 - G0)E ) - 66)
() - Gy )
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Asymptotic Theory for G(t)

Covariance Structure

Cov [Va(Hy () = G(t) — Ha(1)), V/n(Hi(s) — G(s) — Ha(s))]
= (Z pk) D At As)
k=0 j=1
p;l(s)_

~[A0Wp.B0(p®1,)] 5™ [ (0 ®1,)B(5) ] . @

Guanhua Lu Semiparametric Density Ratio Model



Introduction
Asymptotic Theory for 6 and

Asymptotic Theory for Q
Asymptotic Theory for G(t)

For any ﬁnite~set (t1,...,%) of points on the real line, let G,, denote
V/n(Hi(t) — G — Hy(t)), then we have

(Ga(t1),- -, Gu(tr)) % Ni(0, A),

where Nj is a mean-zero k-dimensional multivariate normal
distribution with covariance matrix A, of which the (i, j)th element is
determined by (21).
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Asymptotic Theory for G(t)

Techniques for Proving Tightness

Assume sup,¢ z [|f (x) — Pf|| < oo, for every x. Under this
condition, the empirical process {P,f : f € F} can be viewed as a
map into £>°(F), where ¢>°(F) is a set of uniformly bounded real
functions in F.

F is called P-Donsker class if the empirical processes based on P and
indexed by F satisfy

Gy = (P, —P) % G, in(>(F),

where G is a tight Borel measurable element in £°°(F).
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Asymptotic Theory for 8 and G

Asymptotic Theory for Q
Asymptotic Theory for G(t)

Data Analysis

The collection of all indicator functions of the form I ;4 is a
Donsker class.

If F is a Donsker class with [|P|| < oo and g is a uniformly
bounded, measurable function, then F - g is a Donsker class.

Refer to Example 2.10.10 of Van der Vaart and Wellner (1996), p.192

Any finite dimensional vector space F of measurable functions
is a Donsker class.

Refer to Lemma 2.6.15, Van der Vaart and Wellner (1996) Page 146
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Asymptotic Theory for G(t)

Tightness of \/n(H, (1) — G(t))

xﬂ St

J
1 Z Zk 1 Piewi(x0i)I (x0i < 1)
Zk 0 PEWi(Xo;)
1 " I(xj; < 1)

Hj() = —) w7
]( ) no ‘53 ka:o Pka(in)

_ > net Pkwi(x0i)I (xo;i < 1)
SO Z > ko PkWk(Xoi)
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Asymptotic Theory for 8 and G

Asymptotic Theory for Q
Asymptotic Theory for G(t)

Data Analysis

E[H;(1)] = pA),

~—

E [Hio(1)] =) piA;(1)
=1

H(t) — G(t) = > Hy;(t) — Hyo(t)
=1
= Z [Hj(1) — piAj(0)] — | Hio(7) ij

J=1
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Asymptotic Theory for Q

Asymptotic Theory for G(t)

Let F be the collection of all indicator functions of the form
I(—oo,t] .
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Asymptotic Theory for Q

Data Ana Asymptotic Theory for G(t)

Let F be the collection of all indicator functions of the form
I(—oo,t] .
Py; is the law of X, the jth sample, j =0, 1,...,m.
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Asymptotic Theory for 8 and G
Data Analysis

Asymptotic Theory for Q

Asymptotic Theory for G(t)

Let F be the collection of all indicator functions of the form
I (—OO,t] .

Py; is the law of X, the jth sample, j =0, 1,...,m.

Define uniformly bounded functions

DY/ Y Y S
foly) = S o () i0) > im0 oW ()

j=1,....m.
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Asymptotic Theory for G(t)

Data Analysis

Let F be the collection of all indicator functions of the form
(oo -
Py; is the law of X, the jth sample, j =0, 1,...,m.

Define uniformly bounded functions

_ 2 Pwk(y) pj
o) = > im0 Pk (y) 50) Doieo Pk (Y)’
j=1,....m.

From the previous example, F - f;, i =0,1,...,m, are
Px;-Donsker classes, j = 0,1,...,m
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Asymptotic Theory for Q
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Data Analysis

Let Py = n—lj 27’: | Ox; be the empirical measure of the jth sample.
Then we have

V1 (P, '—PXj (—o0,i)
Z pil (xii < 1) wilnI(y < 1)

p . -—
Zk —0 PkWk x]l) ! ka:() PkWk ()’)

- PJ/ZPk )2 a(Hy — pAKD), j=1,...,m,

dG(y)

and, similarly,

Vo (Pno = Pxy) (I(—c0 4f0) = 1/Zpk 1/ Vi | Hio(t) ij

Guanhua Lu Semiparametric Density Ratio Model



Introduction
Asymptotic Theory for 6 and

Asymptotic Theory for Q
Asymptotic Theory for G(t)

By Donsker’s Theorem,

VT5(Poj = Px) (I —oo afo) > W in D[—00, 0],

where j=0, 1,..., m, and W;’s are mean-zero Gaussian processes.
Therefore,

ﬁ(Hlj = ijj(I)),j =0,1,...,m, are tight in D[—OO, OO]

From the decomposition of v/n(H; () — G(t)),

Vn(Hi (1) — G(r)) is tight in D[—00, o0].
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Tightness of \/nH;(t)

Define functions

-~ pwi(y) _ pwi(y)h(y)
i) = ST o piowe(y)” Vi) Do Pwk(y)’

where [ =0,1,...,m.
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Tightness of \/nH;(t)

Define functions

-~ pwi(y) _ pwi(y)h(y)
i) = ST o piowe(y)” Vi) Do Pwk(y)

where [ =0,1,...,m.

Define spaces

U = Span{U;:k=0,1,...,m}
YV = Span{V;:k=0,1,...,m}
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Asymptotic Theory for Q
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Tightness of \/nH;(t)

Define functions

pwi(y) Vi(y) = powi(y)h(y)

Uly) = k()

Y powk(y)

where [ =0,1,...,m.

Define spaces

U = Span{U;:k=0,1,...,m}
YV = Span{V;:k=0,1,...,m}

U and V are both Donsker classes
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Data Analysis

Let (ai (1), ..., am(t), b} (1), ..., bl (1)) = (A'(t)p,B'()(p @ I,))S~,
Then we have a decomposition for \/nH;(1),

VAH(f) = ﬁ(m(z) am(t),bg(z),...,b;n(;))g_ﬁ

_ mo 2R Pk "
= [Z'zl ) \/_J( PXJ) (El 0 Pj (U )
= S S S5 (P = P) (1))

3 —Z";f 2 Py = Py) (S 0
J
— Y S, B (P, — P) (pt(0)V;) |- 22)
=1 ;;(j) o Iy X)) \PIOL)Vj)| -
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\/nH,(t) is tight in D[—o00, ).
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Asymptotic Theory for Q
Asymptotic Theory for G(t)

Data Analysis

\/nH,(t) is tight in D[—o00, ).

The process v/n (G — G) converges weakly to a zero-mean Gaussian
process W with continuous sample paths in D[—o0, 0o], and the
covariance matrix is determined by

EW(0)W(s) = (Z pk> S (i )
k=0 j=1

_ (A’(t)p, B (1)(p® Ip))S_1 ( (p® 1()1)‘9( ) )
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Data Analysis

Decomposition:

VA(G() - Gla)) = Vi(G() - G(@) + ValG(n) — G()
~ V() = G() — Ha(0) + Va(G() - G(1).
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Asymptotic Theory for 8 and G

Asymptotic Theory for Q
Asymptotic Theory for G(t)

Data Analysis

Decomposition:
Va(G(r) - (1) = Va(G(r) - G(1) + Va(G(r) - G(1)
~ VH (1) — Gr) — Ha(0) + Va(G() — G(1)).

Variance-covariance structure and finite-dimensional
convergence can be obtained similarly as for /n(G(t) — G(1)).
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Decomposition:

VA(G() - Gla)) = Vi(G() - G(@) + ValG(n) — G()
~ V() = G() — Ha(0) + Va(G() - G(1).

Variance-covariance structure and finite-dimensional .
convergence can be obtained similarly as for /n(G(t) — G(1)).
Tightness is followed from the fact that both Vn(G(t) — G(1))
and \/n(G(r) — G(r)) are tight.

Guanhua Lu Semiparametric Density Ratio Model



Introduction
Asymptotic Theory for 8 and G

Asymptotic Theory for Q
Asymptotic Theory for G(t)

Data Analysis

The process 1/n(G(t) — G(r)) converges weakly to a zero-mean
Gaussian process in D[—o0, o], with covariance matrix given by

Cov{vn(G(1) — G(1)), Vn(G(s) — G(s))} =
(Zm)( (tA5) = G(NG(s) = Y piAi(t /\S))
=1

Haero@en)st (0%, ) @
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Outline

A Simulation Study for Estimation of Parameters
Goodness of Fit and Confidence Bands
An Application to Coronary Heart Disease Data
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Simulation Study for Parameters

Generate random samples Xy ~ N(0, 1), X; ~ N(0,2) and
X, ~ N(0,4) with density functions g(x), g; (x) and g (x)
respectively.
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Simulation Study for Parameters

Generate random samples Xy ~ N(0, 1), X; ~ N(0,2) and
X, ~ N(0,4) with density functions g(x), g; (x) and g (x)
respectively.

Fit the following density ratio model:

gi(x) = glx)exp(a + Bix*),
g(x) = g(x)exp(az + Box?). (24)
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Simulation Study for Parameters

Generate random samples Xy ~ N(0, 1), X; ~ N(0,2) and
X, ~ N(0,4) with density functions g(x), g; (x) and g (x)
respectively.

Fit the following density ratio model:

gi(x) = g(x)exp(ay + Bix?),
g(x) = g(x)exp(az + Box?). (24)

True parameters
(a1, a2, B1, B2) = (—0.34657, —0.69315, 0.25000, 0.37500).
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Simulation Study for Parameters

Generate random samples Xy ~ N(0, 1), X; ~ N(0,2) and
X, ~ N(0,4) with density functions g(x), g; (x) and g (x)
respectively.

Fit the following density ratio model:
gi(x) = glx)exp(an + fix?),
g(x) = g(x)exp(az + Fox’). 24)

True parameters
(a1, a2, B1, B2) = (—0.34657, —0.69315, 0.25000, 0.37500).

Calculate average bias and sample variance based on 1000
combined random samples.
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Bias and variance of parameter estimates.

Sample Size Bias(a;) Bias(8;) Bias(ap) Bias(8;)
(50, 50, 50) -0.01663 0.02337 -0.03752 0.03508
(50, 50, 100) -0.00022 0.00856 -0.02041 0.02142
(50, 100, 50) -0.01865 0.02550 -0.03797 0.03338
(100, 50, 50) -0.00326 0.00511 -0.02925 0.01811
(200, 200, 200) -0.00017 0.00217 -0.00303 0.00439
Sample Size  Var(a;) Var(8;) Var(ap) Var(5;)
(50, 50,50) 0.02425 0.01731 0.03362 0.01672
(50, 50, 100)  0.02085 0.01497 0.02276 0.01421
(50, 100,50) 0.01961 0.01623 0.03168 0.01658
(100, 50,50) 0.01773 0.00929 0.02674 0.00828
(200, 200, 200) 0.00611 0.00391 0.00837 0.00374
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95% Confidence intervals for parameters.

Sample Size

aq

a2

(50, 50, 50)
(50, 50, 100)
(50, 100, 50)
(100, 50, 50)

(200, 200, 200)

(-0.64010, -0.05305)
(-0.63505, -0.05810)
(-0.60031, -0.09284)
(-0.60319, -0.08996)
(-0.49333, -0.19981)

(-1.04119, -0.34511)
(-0.98391, -0.40238)
(-1.02833, -0.35796)
(-1.00900, -0.37730)
(-0.86717, -0.51913)

Sample Size 01 1653
(50, 50, 50) (0.02029, 0.47971) (0.14742, 0.60258)
(50, 50, 100) (0.02349, 0.47651) (0.15889, 0.59111)
(50, 100, 50) (0.03402, 0.46598) (0.15327, 0.59673)
(100, 50, 50) (0.06846, 0.43154) (0.19693, 0.55307)
(200, 200, 200) (0.13515, 0.36485) (0.26121, 0.48879)
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Statistic for Goodness-of-fit Test

Define test statistic

A()=vr|G—G|, A,= sup A)

—oo<t<o0o
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Statistic for Goodness-of-fit Test

Define test statistic

A(D)=vn|G—G|, A,= sup Ay
—oo<t<o0o
Let w,, be the a-quantile of the distribution of -
SUP_ oo <1<00 |W(?)|- By weak convergence of /n(G — G),

lim P(A, >wi_o) = lim P( sup /n|G—G|>wi_q)

n—oo —00<1<00

= P( sup |W()|>wi_q) =c.

—oo<r<o0
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Statistic for Goodness-of-fit Test

Define test statistic

A()=vr|G—G|, A,= sup A)

—oo<t<o0o
Let w,, be the a-quantile of the distribution of .
SUP_ oo <1<00 |W(?)|- By weak convergence of /n(G — G),

lim P(A, >wi_o) = lim P( sup /n|G—G|>wi_q)

n—oo —00<1<00

= P( sup |W()|>wi_q) =c.

—oo<r<o0

We reject the density ratio model (6) at level o if

Ay > wi_g-
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Test Procedure Based on Bootstrap

Estimate G, Gl, ., G,, from (Xo, X1, - .., X)) and calculate A,,.
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Test Procedure Based on Bootstrap

Estimate G, Gl, ., G,, from (Xo, X1, - .., X)) and calculate A,,.
Generate X5, X7, ..., X, from G, Gl, ...,Gn respectively.
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Test Procedure Based on Bootstrap

Estimate G, Gl, ., G,, from (Xo, X1, - .., X)) and calculate A,,.
Generate X5, X7, ..., X, from G, Gl, ...,Gn respectively.

Obtain the estimate G* for G based on (X, X},...,X5) and
empirical cdf G* for X, then calculate

A= sup +/n|G*—G*|

—oo<t<oo
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Test Procedure Based on Bootstrap

Estimate G, Gl, ., G,, from (Xo, X1, - .., X)) and calculate A,,.
Generate X5, X7, ..., X, from G, Gl, ...,Gn respectively.

Obtain the estimate G* for G based on (X, X},...,X5) and
empirical cdf G* for X, then calculate

A= sup +/n|G*—G*|

—oo<t<oo

I /n(G* — G*) L W, W is also the limit process of \/n(G — G).
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Test Procedure Based on Bootstrap

Estimate G, Gl, ., G,, from (Xo, X1, - .., X)) and calculate A,,.
Generate X5, X7, ..., X, from G, Gl, ...,Gn respectively.
Obtain the estimate G* for G based on (X5, X7,...,X;,) and
empirical cdf G* for X, then calculate

A= sup +/n|G*—G*|

—oo<t<oo

I /n(G* — G*) L W, W is also the limit process of \/n(G — G).
Repeat step 3 by bootstrapping from (Xj, X7, ..., X,).
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Test Procedure Based on Bootstrap

Estimate G, Gl, ., G,, from (Xo, X1, - .., X)) and calculate A,,.
Generate X5, X7, ..., X, from G, Gl, ...,Gn respectively.

Obtain the estimate G* for G based on (X, X},...,X5) and
empirical cdf G* for X, then calculate

A= sup +/n|G*—G*|

—oo<t<oo

I /n(G* — G*) L W, W is also the limit process of \/n(G — G).
Repeat step 3 by bootstrapping from (Xj, X7, ..., X,).

Thus we can approximate the quantiles of A, by those of A.
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Example 1. (Correctly Specified Model)

Simulated samples Xy ~ N(0,1),X; ~ N(0,2) and X, ~ N(0,4)
with sample sizes (ng,ny,n) = (50,60, 80).

Fit the following model with distortion function /1(x) = x°

gilx) = glx)exp(ar + fix’),

2(x) = gx)exp(as + ox?).
(a1, an, ﬁl,ﬁz) = (—0.576, —0.84,0.436,0.535). The value of
the proposed test statistic 2\, = 1.05, and the observed p-value is

P(A}; > 1.05) = 0.904 based on 1000 bootstrap replications of
Ar.
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Example 2. (Misspecified Model)

Use the same data as in Example 1.

Intentionally fit the following misspecified model with distortion
function /1(x) = x

g1(x) = g(x)exp(as + Bix),

2(x) = g(x)exp(an + fax).
(&1,&2,ﬁ1,ﬁz) = (—0.00072, —0.03, —0.0015,0.032). The
value of the proposed test statistic A, = 2.31, and the observed

p-value is P(A} > 2.31) = 0.007 based on 1000 bootstrap
replications of A.
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Example 3. (With Relaxed Weight Functions)

Use the same data as in Example 1.
Fit the following model with distortion function /(x) = (x, x*)’
gi1(x) = g(x)exp(ar +yix+ fix’),
g2(x) = g(x)exp(az + y2x + Box?).
(dly d27 ’)717 ’)727 Bla 132) —
(—0.562, —0.860, 0.023,0.139, 0.427,0.539). The value of the
proposed test statistic A,, = 0.92, and the observed p-value is

P(A}; > 0.92) = 0.89 based on 1000 bootstrap replications of
A,
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Confidence Bands (with Equal Widths)

The limit of A, = sup_ << oo V7 |G(1) — G(1)| agrees with the
limit of its bootstrap counterpart
Ay =SUp_<1<00 V1 |G*(t) — G(2)| almost surely.
Approximate the quantiles of A, by those of the distribution of
Ay,
For o € (0,1), let

wi_o = Inf{y|P*(A, <y) > 1 —a},

then a 1 — « level bootstrap confidence band for G is given by

(GO) = wi_a/ Vi, GC)+wi_afvi). 25)
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Pointwise Confidence Intervals

Let V(1;) be the estimated variance for G(z;) at each point #; from the
covariance matrix (23). Then a 1 — « level pointwise confidence
interval for G(;) is given by

(G(li) — 21—apV V() G(t) +21—aj2V V(h‘)) ; (26)

where z;_; satisfies P(Z < z;_op) = | — /2 with Z ~ N(0, 1).
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Bonferroni Simultaneous Confidence Intervals

The 1 — a Bonferroni simultaneous confidence intervals given by
(G = 2L oV, 6+ 672, V@), @D

where t” o/2n 1 the (1 — 5.) percent cutoff point of the £,
dlstrlbutlon with degree of freedom n — 1.
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Data: Hosmer & Lemeshow[1989, Ch. 1] used the logistic
model to analyse the relationship between age and the status of
coronary heart disease based on 100 subjects participating in a
study. Let x denote age and y = 1 or 0 represent the presence or
absence of coronary heart disease. (x;,y;),i=1,...,100.
Model: P N
x|y =
—— = —exp(a+ 6x).
Plly=0) P+
Estimation: (&, 3) = (—5.0276,0.1109). The value of the
proposed test statistic A, = 0.2199, and the observed p-value is

P(A}; > 0.2199) = 0.970 based on 1000 bootstrap replications
of A7.
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Fit a More Complex Model:
Plly=1)
2
————= = exp(a + Bx + yx°). (28)
P(xly =0)

Wald Test: When Hy : v = 0 is true under model (28),
Vg — N(0,03),

where o*% is the asymptotic variance of 7. Let &,ZY be the
empirical version of agy on the basis of G, we can use the statistic

T:\/ﬁAl2
Iy

to test Hy : v = 0 is true under model (28).

Estimation: (&,B,fy) = (—3.9589,0.0613,0.0006). The Wald
statistic 7 = 0.2557, and the observed p-value is 0.798. This
suggests to accept Hy : v = 0.
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Odds-linear Model:

P(y = 1x)
=P =1 ao + Box (29)
This model is equivalent to
Plly=1)
——— = =exp{a+r(x;0)}, (30)
P(xly = 0) eiroles il

where r(x; 3) = log(1 + (6o/ao)x). The asymptotic results can
be easily extended to model (30).

Estimation: (é&, ) = (—7.62,47.47). The value of the proposed
test statistic A, = 1.55, and the observed p-value is

P(A}; > 1.55) = 0.005 based on 1000 bootstrap replications of
Ar.
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Thank You!

Happy Brithday to Dr.
Kedem!
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