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Abstract

We believe that approaches to analysis of complex data can be developed from

our United Applicable Statistics (“analogies between analogies”) concept of a uni-

fied learning framework for almost all of the Science of Statistics, which we dis-

tinguish from the Statistics of Science. Important tools are the novel probability

and statistical theory of mid-distributions, mid-quantiles, new way to calculate

(for data with ties) sample quantiles and median (mid), asymptotic normality of

mid-distributions of Binomial, Poisson, hypergeometric distributions. We advo-

cate statistical inference by mid-PVALUE function of a parameter whose inverse

(under a stochastic order condition) is defined to be confidence quantile (of a con-

fidence distribution). We show mid-P frequentist confidence intervals for discrete

data have endpoint function equal to confidence quantile, which is algorithmically

analogous to Bayesian posterior quantile. One computes frequentist (without as-

suming prior) but interprets Bayesian. We conclude with 0 − 1 data inference,

and quasi-exact (Beta distribution based) confidence quantiles of parameters p and

log-odds (p). We claim quasi-identity of frequentist mid-P confidence intervals
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and Bayesian posterior credible intervals with uninformative Jeffrey’s prior. For

parameters of standard probability models, calculating confidence quantiles yields

Bayesian posterior quantiles for non-informative conjugate priors and provides

frequentist motivation for conjugate priors.

Keywords: Mid-distribution, mid-quantile, inversion formula from characteristic function,

mid-PVALUE, confidence intervals for parameter p, normal approximation to discrete dis-

tributions, convergence in mid-distribution.
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1 In Honor of Professor Ben Kedem

I am honored to speak at the celebration of the outstanding career of Ben Kedem, and to

thank him for his leadership and pioneering contributions to Statistical Analysis of Time

Series and Spatial data.

One way to show that Ben is a Leading Expert on Time Series Analysis is to compare

what he teaches in his course on Time Series Analysis. I find the syllabus of Ben’s 2009

course Stat 730: Time Series Analysis a role model of a comprehensive course. It covers:

(1) Spectral Analysis

(2) Filtering

(3) ARMA modeling

(4) Model selection criteria AIC

(5) Box Jenkins modeling

(6) State space modeling, Kalman filtering

(7) Regression methods for time series

(8) Spatial prediction

(9) Higher order crossings

Only a few important topics might be missing:

(10) Reproducing kernel Hilbert space inference

(11) Long memory models

(12) Non-linear models ARCH GARCH

(13) Copula nonparametric models

Ben’s leadership in research and pedagogy is demonstrated by his emphasizing in his

teaching analogies between methods for time series and spatial data.
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I have been an admirer and friend of Ben for many years because of our interests in time

series. This conference in Ben’s honor provides additional evidence to the administrators of

the University of Maryland of the eminence of Ben Kedem. He provides its statistics program

with unique strength in Statistical Time Series Analysis that I believe ranks Maryland in

the Top Five American programs in Time Series Analysis.

Since Parzen (1977), (1979) my research interests have been quantiles and their role in

the unification and synthesis of diverse statistical methods: frequentist, Bayesian, nonpara-

metric, functional, concrete (continuous and discrete) data analysis. I believe that formulas

which apply to both continuous and discrete variables can be especially applicable to high-

dimensional data.

Many statistical methods are analogous because they are about comparing distributions

and testing the equality of two distributions:

H0 : P = F (y) = G(y), for all y,

which I express in terms of the quantile (inverse distribution) function G−1(P )

D(P ; G, F ) = F (G−1(P )) = P for 0 < P < 1.

I call D(P ; G, F ) a comparison distribution. In the continuous case it has comparison density

(or relative density)

d(P ; G, F ) = f(G−1(P ))/g(G−1(P )).

To define the comparison density in the discrete case replace the probability density functions

f and g by probability mass functions pF and pG.

Kedem’s research on combination of information from many samples can be viewed as

estimating comparison (or relative or grade) densities. These (neglected) problems are very

important for applications and deserve study by statisticians who worry that there are no

open problems for statistical research.

I recommend that a cure to the feeling of the statistical community that it gets “no

respect” is to define a frontier of statistical research. This is difficult because the discipline

of statistics is composed of a few mainstream “fads” and many mini-communities which pay

no attention to many advances in the Science of Statistics that are ready to be applied to

other fields of science (which I call the Statistics of Science).
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Statisticians are in a battle for leadership of the “Statistics of Science” (applications).

In my view young statisticians (who may be concerned less with the Science of Statistics

and more with the practice of the Statistics of Science) should realize that they can remain

relevant (and competitive with econometricians and computer scientists) only by emphasiz-

ing their expertise in the “Science of Statistics” (applicable theory, emphasizing “analogies

between analogies” which provide solutions in one field by technology transfer of solutions

of problems in other fields that have been successfully solved statistically).

EXAMPLE of inappropriate practice of “analogies between analogies” reasoning: An

alleged cause of the current Wall Street caused economic crisis is practice of analogies between

measuring risks of (1) deaths of related people and (2) defaults of related securities, described

in newspaper articles as from “couples to copulas”.

Academic statisticians need to practice United Statistics to fulfill their applied research

and teaching missions, to innovate applicable methods for analysis of complex data, and to

fulfill their enormous responsibilities of teaching statistical thinking to millions of students

seeking (or forced) to learn statistical methods and modeling for success in their careers and

daily lives.

To solve statisticians’ public relations problem of “more respect” they should advertise

to the world that they integrate and connect the three circles of statistical practice, research,

and education.

2 United Applicable Statistics, Learning Framework

for Almost All of the Science of Statistics

As I evaluate my research career I believe that its approach has been to be comprehensive (a

fox) rather than concentrate on a narrow problem (a hedgehog). Some recent commentators

allege that in predicting and planning the future, and also in innovating new scientific ideas,

“big picture” foxes do better than “specialized publication centered” hedgehogs. The con-

cepts “hedgehog” and “fox” are very popular (and were advocated by the British philosopher

Isaiah Berlin whom I met when I was a Harvard undergraduate).

An informative game (that I think would be beneficial for the health of the discipline
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of Statistics to play) is to choose a list of statisticians and debate who is a fox and who is

a hedgehog. In my view Ben Kedem is a fox because he has helped innovate new fields of

research. Should we be concerned to inspire young statisticians to be foxes by improving

career rewards for foxes?

I describe my recent research (driven by intellectual curiosity but I believe ultimately very

practical for teaching and applied research) as seeking a unified approach to the discipline and

profession of statistics which I call “United Applicable Statistics”. It aims to develop theory

to practice (1) unified rather than ad hoc problem solving strategies, and (2) reasoning called

“analogies between analogies”. Details of this approach to statistical thinking are described

on my website in my “Last Lecture 1949-2009: Quantiles are Optimal”, and in recent papers

Parzen (2004), (2008), (2009).

A main tool of my research, which is the focus of this paper, is the theory of mid-P

inference, mid-distribution functions, and mid-quantile functions of discrete random variables

(which I believe provide a key to unifying discrete and continuous data modeling and to

handling ties in data).

I believe that for the important frontier problem of high dimensional data analysis and

classification we can develop nonparametric methods that apply our “correlation” and “mid-

distribution” unification of traditional nonparametric methods. My personal motto is, “I

have answers to statistical questions; what is your problem?”

Our practical goal is to enable simultaneous practice in statistical inference of the ap-

proaches of Fisher, Neyman, Tukey, and modern (hierarchical) Bayesians. An important

conclusion is that frequentist inference (confidence intervals and hypotheses tests) can be

expressed in terms of a “knowledge distribution” for a parameter (while emphasizing that

the parameter is an unknown constant and not a random variable with a prior distribution).

We describe the frequentist knowledge distribution of a parameter by a confidence quantile

(a confidence interval endpoint function) which has same mathematical (algorithmic) prop-

erties as a posterior quantile used to describe the Bayesian posterior knowledge distribution

of a parameter which is assumed to have a prior (knowledge) distribution.

We claim that unification can be accomplished in practice for the usual introductory

probability models because with a conjugate prior distribution:
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(1) The Bayesian posterior distribution is identical with the frequentist confidence distri-

bution for “augmented data”, and

(2) The confidence distribution for the actually observed data is identical with the Bayesian

posterior distribution for an “uninformative flat” prior.

(3) We propose to practice statistical inference by thinking Bayesian and computing fre-

quentist (and when prior knowledge is available comparing its answers with answers

not assuming prior knowledge).

A problem often encountered in the practice of statistics is not that we don’t have an

answer to your question, but that we have too many answers and don’t know which ones to

choose as our “final” answer. A problem with an extensive literature, and many competing

answers, is inference for parameters of discrete data, such as the true population proportion

p when one observes K successes in n trials. What may be novel is our claim that for

a proportion p of 0 − 1 data the mid-P frequentist confidence interval is approximately

identical with the Bayesian Jeffrey’s prior credible interval.

An important inference method that is unknown (and perhaps difficult to accept) to

many statisticians is the “mid-P” approach (usually credited to Lancaster, 1961). This paper

presents theory to justify this frequentist approach and argues that it can be recommended as

the “final” (benchmark) answer because it is identical with the Bayesian answer for a Jeffrey’s

Beta(.5,.5) prior for p. While for large samples other popular answers are approximately

numerically equivalent, introductory courses will be happier if we teach only one way, the

“right” way, the way that is accurate for small samples and zero successes. It is easy to

compute from software for the quantile function of the Beta distribution.

3 MID-Distribution, MID-Quantiles

A random variable Y can be described by

(1) Distribution function F (y) = F (y; Y ) = Pr[Y ≤ y]

(2) Quantile function (inverse distribution function)

Q(P ) = Q(P ; Y ) = inf {y : F (y) ≥ P}, 0 < P < 1

7



(3) stochastic model

Y = h(θ, V )

where θ is a parameter and V is a random variable with known distribution F (y; V ). When

h is increasing function of V , continuous from the left,

Q(P ; Y |θ) = h(θ, Q(P ; V ))

Many applications assume important stochastic model, called location-scale parameter

model,

Y = µ + σV, Q(P ; Y |µ, σ) = µ + σQ(P ; V ).

In terms of U =Uniform(0,1) in distribution, one can always represent Y = Q(U ; Y ) in dis-

tribution. Less well known is an important representation, useful for computing conditional

quantiles Q(P ; Y |X) :

Y = Q(F (Y )) with probability 1.

When Y is continuous we define U = F (Y ; Y ) to be the probability integral transform

of Y , satisfying U =Uniform(0,1) in distribution.

When Y is discrete we recommend mid-probability integral transform U = Fmid(Y ; Y )

where Fmid(y; Y ) is mid-distribution function defined in terms of probability mass function

p(y; Y ) = Pr[Y = y] by

F mid(y; Y ) = F (y; Y ) − .5p(y; Y ) = midPr[Y ≤ y]

The mean and variance of Fmid(Y ; Y ) have formulas with elegant proofs given in Parzen

(2004).

DEFINE EXTENDED MEDIAN OF DISCRETE RANDOM VARIABLE:

Verify

Pr[Y > y] − P [Y < y] = 1 − 2Pr[Y < y] − p(y; Y ) = 1 − 2Fmid(y; Y ).

Median Q2 can be defined intuitively as number satisfying Pr[Y > Q2] = Pr[Y < Q2]; an

equation to compute median is 1 − 2Fmid(Q2; Y ) = 0 which may not have a solution. We

therefore define “extended median” Qm2 by equation

1 − 2Fmidc(Qm2; Y ) = 0,
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where Fmidc(y; Y ) is continuous version of Fmid(y; Y ) defined below. Its inverse, denoted

Qmid(P ; Y ), is called mid-quantile.

When Y is discrete, Fmid(y; Y ) is piecewise constant equal, at points of discontinuity,

to the average of the left hand and right hand limits of F (y; Y ). I believe that a theoretical

justification for statistical practice of mid-probability inference is that inversion formulas for

distribution functions from characteristic function, usually stated for F (y; Y ) at continuity

points y, are true for Fmid(y; Y ) for all values of y. Section 4 discusses a proof essentially

already in my classic introductory probability textbook Parzen (1960).

The concepts of population median Q2 and quartiles Q1 and Q3 are defined for Y con-

tinuous

Q2 = Q(.5; Y ), Q1 = Q(.25; Y ), Q3 = Q(.75; Y )

For Y discrete we recommend extended definitions (in terms of the mid-quantile Qmid(P ; Y )

to be defined below)

Qm2 = Qmid(.5; Y ), Qm1 = Qmid(.25; Y ), Qm3 = Qmid(.75; Y )

The sample distribution function F̃ (y; Y ) is discrete; we recommend that its sample

quantiles should be defined and computed using the extended definition in terms of sample

mid-quantile function Q̃mid (P ; Y ).

DEFINITION OF MID-QUANTILE: Define Qmid(P ; Y ) to be the continuous func-

tion which is the inverse of the continuous version Fmidc(y; Y ) of the mid-distribution

Fmid(y; Y ) of the discrete random variable Y . Denote by y1 < . . . , yr the jump points

(probable values) of Y . Define

Pj = Fmid(yj; Y ), pj = p(yj; Y ).

At Pj define

Qmid(Pj) = yj

For P < P1, define Qmid(P ; Y ) = y1. For P > Pr, define Qmid(P ; Y ) = yr. For Pj < P <

Pj+1, define Qmid(P ; Y ) by linear interpolation,

Qmid(P ; Y ) = yj + (yj+1 − yj)(P − Pj)/(Pj+1 − Pj).
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A very useful identity:

Pj+1 − Pj = .5(pj + pj+1).

Define Fmidc(y; Y ) to be inverse of Qmid(P ; Y ); it obeys for yj < y < yj+1

Fmidc(y; Y ) = Pj + (Pj+1 − Pj)(y − yj)/(yj+1 − yj),

For y < y1, Fmidc(y; Y ) = 0. For y > yr, Fmidc(y; Y ) = 1.

Note formula for probability density function for y between yj and yj+1 and P between

Pj and Pj+1

fmidc(y; Y ) = (Pj+1 − Pj)/(yj+1 − yj) = fmidc(Qmid(P ; Y ); Y ).

Exploratory data analysis seeks to describe a sample Y1, . . . , Yn of Y . We have following

functions:

sample distribution function F̃ (y; Y ),

sample quantile Q̃(P ; Y ),

sample mid-distribution F̃ mid(y; Y ),

sample continuous version of mid-distribution F̃midc(y; Y ),

sample mid-quantile Q̃mid(P ; Y ),

sample median(mid) Q̃m2, sample quartiles (mid) Q̃m1 and Q̃m3.

EXAMPLE: A Bernoulli 0 − 1 random variable Y , with Pr[Y = 1] = p, satisfies:

Fmid(0) = .5(1− p), Fmid(1) = 1 − (p/2), Qmid(.5) = (.5− .5(1 − p))/.5((1 − p) + p) = p.

4 Order Statistics, Example Sample Median (mid)

The values in a sample arranged in nondecreasing order is denoted Y (j; n) and called the

order statistics. The sample quantile function Q̃(P ; Y ) can be expressed

Q̃(P ; Y ) = Y (j; n), (j − 1)/n < P ≤ j/n

Statisticians are not in consensus about how to define sample medians and quartiles.

They can be viewed as values at P = .25, .5, .75 of a continuous version Q̃c(P ; Y ) with
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possible definitions (we assume all values in sample are distinct, no ties)

Q̃5(P ; Y ) = Y (nP + .5; n), R type 5 and Parzen;

Q̃7(P ; Y ) = Y ((n − 1)P + 1; n), R type 7, R default, S and Excel;

Q̃6(P ; Y ) = Y ((n + 1)P ; n), R type 6, Minitab, and SPSS

defining fractional order statistic Y (k + r; n) = Y (k; n) + r(Y (k + 1; n) − Y (k; n))

When all values are distinct midP values are Pj = (j − .5)/n, F̃mid(Y (j; n); P ) = Pj,

Q̃mid(Pj; Y ) = Y (j; n), Q̃mid(P ; Y ) = Q̃5(P ; Y ).

EXAMPLE: Sample median (of a sample with ties) where extended definition provides

an answer different (in value and interpretation) from standard answer which does not take

account of ties in the data.

An automobile dealer with 9 new cars available for sale advertises that his cars are “fuel

efficient” with average miles per gallon 18 mpg. The actual mpg ratings of his cars are listed:

16, 21, 20, 25, 20, 13, 20, 15, 15. The order statistics Y (j; n) are 13, 15, 15, 16, 20, 20, 20, 21,

25. The usual median Q2 equals 20, the middle value. It is very different from our median

Q̃m2 = 18, closer to the sample average 18.3. To calculate our median, determine: (1) the

distinct values in the sample, 13, 15, 16, 20, 21, 25; (2) mid-probabilities P1,P2,P3,P4,P5,P6

equal 1/18, 4/18, 7/18, 11/18, 15/18, 17/18. Because .5 is the average of P3 and P4, we

compute Q̃m2 = Q̃mid(.5; Y ) as the average of 16 and 20, equal to 18!

5 Mid Distribution Asymptotic Normal Theorems, Char-

acteristic Function Inversion Formulas

Frequentist inference of the population parameter p of 0-1 variable Y with sample proportion

p̃ = K/n starts with exact or approximate sampling distribution given p of the discrete

random variable p̃. We express this distribution approximately in terms of a continuous

random variable Z by using a transformation called a pivot. Our definition of pivot is

expressed:

T in (p|p̃) = (p − p̃)/
√

(p(1 − p)/n)
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We write T in to denote that it is an increasing function of p; this can be proved by

showing that its derivative with respect to p is positive. The other condition on a pivot is

that its distribution does not depend on the parameter p.

Let Z be a generic symbol for a Normal(0,1) random variable. From the Asymptotic

Normal Theorem (Central Limit Theorem) we conclude that when p is the true value of the

parameter

T in (p|p̃) = Z

in distribution approximately. A usual (but often inaccurate) interpretation is for every y

F (y; T in (p|p̃)) = F (y; Z)

approximately.

To obtain an improved approximation of the discrete random variable T in (p|p̃) by the

continuous random variable Z we have a choice of two approaches:

(1) a continuity correction,

(2) an approximation of mid-distribution functions:

Fmid(y; T in (p|p̃)) = F (y; Z)

approximately.

My probability textbook Parzen (1960) has a direct geometric proof of the approximate

normal distribution of p̃ which demonstrates why the mid-distribution normal approximation

is very accurate, and why the continuity correction works to approximate the distribution

function.

More research is needed to show why mid-probability approximation is accurate in gen-

eral; we conjecture it is true because (as we next show) the inversion formula of distribution

functions from characteristic functions actually holds for mid-distributions. We state three

general theorems about the relation between characteristic functions and mid-distribution

functions which we believe will help explain the increased accuracy of the mid-distribution

normal approximation.
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Parzen (1960) has detailed proofs (of inversion formulas and convergence in distribution

of a sequence Zn to a limit Z) that can be immediately interpreted to provide proofs of the

following theorems about mid-distributions.

Convergence in mid-distribution Theorem. If Zn converges in distribution to Z then

at every continuity point y of F (y; Z)

Fmid(y; Zn) converges to F (y; Z)

Proof: in Eq. (5.6), p. 435 replace F (b; Zn) by Fmid(b; Zn)

Extended Inversion Formulas. In statement of Theorem 3A on p. 401 replace F (b; X)−

F (a; X) by Fmid(b; X)−Fmid(a; X) and drop condition that a and b are continuity points.

In statement of eq. (3.12) on p. 402 replace F (x; X) by Fmid(x; X) and drop condition

that x is a continuity point.

Proof of extended inversion formula Extended Theorem 3A follows from eq. (3.8) by

replacing F (b; X) − F (a; X) by Fmid(b; X) − Fmid(a; X). The proof of extended (3.16)

follows from the equation following eq. (5.17) on p. 412 and the fact

Pr[X > x] − Pr[X < x] = 1 − 2Fmid(x; X).

More research is required on Berry-Esseen theorems for mid-distributions, and on Ba-

hadur representations for sample mid-quantiles. The asymptotic normal distribution of the

sample mid-quantiles is studied for both continuous and discrete data in the paper Ma,

Genton, Parzen (2009).

DIRECT PROOFS WITH ERROR BOUND OF ASYMPTOTIC NORMAL-

ITY OF MID-DISTRIBUTION OF BINOMIAL, HYPERGEOMETRIC, POIS-

SON: Let K be integer-valued random variable, and Z Normal(0,1).

STARTING LEMMA: “probability mass function lemma”. By interpreting usual

calculations show that for a suitable constant c and large values of σ[K], the probability

mass function p(k) of K satisfies, for y = (k − E[K])/σ[K],

σ[K]p(E[K] + yσ[K])/f(y; Z) = 1 + |y|3c/σ[K].

Therefore conclude that for almost all y (not a probable value)

fmidc(y; (K − E[K])/σ[K])/f(y; Z) = 1 + |y|3c/σ[K].
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THEOREM: A Berry-Esseen type supremum bound for all y and k

|Fmidc(y; (K − E[K])/σ[K])− F (y; Z)| ≤ c/σ[K]

|Fmid(k; K)− F (k; E[K] + σ[X]Z)| ≤ c/σ[K].

We believe that the foregoing facts (proved separately for each model) can be applied in

practice as an example of unifying analogous problems by “analogies between analogies”. A

proof for hypergeometric probability of the “probability mass function lemma” is contained

in Lahiri and Chatterjee (2007). For binomial and Poisson proof is outlined in Parzen

(1960), p. 242, eq. (2.2). Guidelines for how small can be value of σ[K] for accurate

normal approximation should be numerically determined by comparing true values of mid-

distribution with approximate normal values.

6 Confidence Quantile, Inverse of MID-PVALUE

Television ads often tell us that only one doctor out of ten does not prefer an advertised

product. We teach our students that to interpret this information we should ask “What

is the 95% confidence interval for true proportion p of all doctors who do not prefer the

advertised product?” This is a typical (analogous) problem of applied statistics.

We observe a sample of size n (here n = 10) of a 0-1 variable Y with true population

probability p = Pr[Y = 1], and K values 1 in the sample (here K = 1). Sample probability

p̃ = K/n is an estimator of p which is regarded as an unknown constant. The numerical

value of K is denoted Kobs, which yields a numerical value p̃obs=Kobs/n for the random

variable p̃. We desire an interval estimator of the parameter p. We obtain this from a formula

for the quantile of a probability distribution for our knowledge of p given the observed data.

Modern Bayesian inference using conjugate priors assumes a Beta prior distribution

Beta(a, b) for p, and reports a Beta posterior distribution Beta(a∗, b∗) for p, with hyper-

parameter update formulas a∗ = a+K and b∗ = b+n−K. We call a and b hyper-parameters

whose “update formulas” are central tools of Bayesian inference with conjugate priors.

Uninformative prior or Jeffrey’s prior assumes a = b = .5. To describe posterior distri-

bution of p we recommend posterior quantile

Q(P ; p|p̃, Jeffrey’s prior) = Q(P ; Beta(K + .5, n − K + .5)).
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because it provides the most convenient way to describe a 95% credible interval for the

parameter p:

Q(.025; Beta(K + .5, n − K + .5)) < p < Q(975; Beta(K + .5, n − K + .5)).

By introducing the concept of “endpoint function” of frequentist confidence interval, and

denoting it Q(P ; p|p̃obs), 0 < P < 1, we can express the 95% level confidence interval in a

similar form

Q(.025; p|p̃obs) < p < Q(.975; p|p̃obs)).

To use the concept of endpoint function we have to answer three questions:

how to define it;

how to compute it;

how to interpret it.

We define confidence interval endpoint function below in terms of mid-probability as the

inverse of MID-PVALUE which is an increasing function of p by a stochastic order condition;

we compute it by the quasi-exact (approximately accurate) formula

Q(P ; p|p̃obs) = Q(P ; Beta(K + .5, n − K + .5));

we interpret it in the same way that we interpret a Bayesian credible interval.

CONFIDENCE QUANTILE: We call Q(P ; p|p̃obs) a confidence quantile; it has the

same mathematical properties as a posterior quantile, and is the quantile function of the

confidence distribution of the random variable p|p̃obs, representing our uncertain knowledge

(given the data) of the unknown constant p.

MID PVALUE AND STOCHASTIC ODER CONDITION: The frequentist def-

inition of confidence quantile starts with the concept of Mid-PVALUE function of the pa-

rameter p, given p̃obs:

Mid − PVALUE(p; p̃obs) = MidPr[K ≥ Kobs|p] =

= 1 − Fmid(Kobs; K|p)

We require FUNDAMENTAL STOCHASTIC ORDER ASSUMPTION: Mid-PVALUE

is assumed to be an increasing function of p, for fixed value of Kobs.
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The confidence quantile Q(P ; p|p̃obs) is defined to be the INVERSE Mid-PVALUE, the

inverse function of the Mid-PVALUE function of p. For fixed P , Q(P ; p|p̃obs) is the value

of p such that P =Mid-PVALUE(p; p̃obs), and satisfies estimating equation

Fmid(Kobs; K|Q(P ; p|p̃obs)) = 1 − P.

One can numerically compute and plot the solution of this equation by plotting, for

0 < p < 1, (Fmid(Kobs; K|p), p).

THEOREM: An analytic formula for the confidence quantile of the parameter p is

obtained by “proving” the quasi-exact approximate formula

MidPr[Binomial(n, p) ≥ k] = Pr[Beta(k + .5, n − k + .5) ≤ p]

Proof: Justify by proving the inequalities (noted by Leonard (1999, p. 136))

Pr[Binomial(n, p) ≥ k] ≤ Pr[Beta(k + .5, n − k + .5) ≤ p]

≤ Pr[Binomial(n, p) ≥ (k + 1)].

Note the well known identity between the Binomial and Beta distributions:

Pr[Binomial(n, p) ≥ k] = Pr[Beta(k, n − k + 1) ≤ p]

7 Confidence Quantiles of Parameters p, logodds(p)

We conclude our discussion of confidence quantiles with formulas for confidence quantiles of

p and logodds (p) that we believe deserve to be widely practiced in applied statistics (the

Statistics of Science).

Theorem A: Frequentist confidence quantile of parameter p is quasi-identical with

Bayesian Jeffrey’s posterior quantile

P = Pr[Beta(Kobs + .5, n − Kobs + .5) ≤ p = Q(P ; p|p̃obs)]

Q(P ; p|p̃obs) = Q(P ; Beta(Kobs + .5, n − Kobs + .5)).

Define a∗ = Kobs+.5, b∗ = n − Kobs +.5, n∗ = a∗ + b∗, p∗ = a∗/n∗, n∗∗ = n∗p∗(1 − p∗).

Note 1/n∗∗ = (1/a∗) + (1/b∗).
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Theorem B: Confidence quantile of parameter logodds(p)

Q(P ; logodds(p)|p̃obs) = logodds(p∗) + Q(P ; log F (2a∗, 2b∗))

Theorem C: Novel exact normal approximation to confidence quantile for logodds(p)

Q(P ; log F (2a∗, 2b∗)) = (−1/3a∗) + (1/3b∗) +
√

(1/n∗∗)Q(P ; Z)

The problem of Normal approximations for a log F random variable has an extensive liter-

ature outlined in the book by Kendall and Stuart.

Theorem D: Wilson (1927) or Score confidence interval for p has endpoint function

Q(P ; p|p̃obs, n) which can be computed from estimating equation in terms of approximately

normal increasing pivot T in(p; p̃):

T in(Q(P ; p|p̃obs, n); p̃obs) = Q(P ; Z)

We regard Wilson confidence quantile as a large sample approximation to MidP/Beta con-

fidence quantile.

EXAMPLES p CONFIDENCE INTERVALS: n = 10, K = 1; n = 5, K = 4;

n = 100, K = 10. When we observe that K = 1 doctors out of n = 10 do not favor

a product, we seek a 95% confidence interval for p, the population proportion of doctors

favoring the product. We recommend the mid-P confidence interval (equivalently Bayesian

credible interval with Jeffrey’s prior), whose endpoints are computed from confidence quantile

Q(P ;Beta(1.5,9.5)). The following table compares endpoints of intervals computed by various

popular formulas.

Recommended MidP/Beta WilsonScore ExactClopper AgrestiCoull Wald

Lower .025 endpoint .011 .018 .0025 -.004 -.086

Upper .975 endpoint .38 .404 .445 .426 .285

Quality control engineers seek 95% confidence intervals for the true probability p of

completing a task when in a small sample of n = 5 one observes an 80% completion rate

(K = 4). The MidP confidence quantile is Q(P ;Beta(1.5,4.5)).

17



Recommended MidP/Beta WilsonScore ExactClopper AgrestiCoull Wald

Lower .025 endpoint .321 .376 .284 .365 .449

Upper .975 endpoint .971 .964 .995 .983 1.00

We conclude with the endpoints of the 95% confidence interval for p when n = 100,

K = 10. The midP confidence quantile of the parameter p is Q(P ;Beta(10.5,90.5)).

Recommended MidP/Beta WilsonScore ExactClopper AgrestiCoull Wald

Lower .025 endpoint .053 .055 .049 .054 .041

Upper .975 endpoint .170 .174 .176 .176 .159
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Transactions Data
Number of transactions per minute for the stock Ericsson B during July 2nd,
2002. The bottom plot shows their autocorrelation function.
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Previous Work 1

Suppose that {Yt , t = 1, 2, . . . , n} is a count time series and let FY ,λ
t stands

for the σ–field generated by {Y0, . . . ,Yt , λ0}. Rydberg and Shephard (2000)
and Streett (2000) have studied the following linear model

Yt | FY ,λ
t−1 ∼ Poisson(λt),

λt = d + aλt−1 + bYt−1, (1)

for t ≥ 1 and the parameters d , a, b are assumed to be positive. In addition
assume that λ0 and Y0 are fixed.



Previous Wok 2

1. For the Poisson distribution, the conditional mean is equal to the
conditional variance, that is

E[Yt | FY ,λ
t−1 ] = Var[Yt | FY ,λ

t−1 ] = λt .

2. It is tempting to call (1) an INGARCH(1,1)–that is integer GARCH model.

3. Proposed modeling is based on the evolution of the mean of the Poisson
instead of its variance.
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Previous Work 3

1. Second order properties of model (1) have been studied by Rydberg and
Shephard (2000).

2. Streett (2000) shows existence and uniqueness of a stationary
distribution.

3. Ferland et al (2006) consider the general INGARCH(p,q)

Yt | FY ,λ
t−1 ∼ Poisson(λt),

λt = d +

p∑
i=1

aiλt−i +

q∑
j=1

bjYt−j ,

and show second order stationarity provided that

0 <
p∑

i=1

ai +

q∑
j=1

bj < 1.
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Previous Work 4

1. It can be shown that

E [Yt ] = E[λt ] ≡ µ = d/(1− a− b)

2. The autocovariance function of Yt is

Cov [Yt ,Yt+h] =


(1− (a + b)2 + b2)µ

1− (a + b)2 , h = 0,

b(1− a(a + b))(a + b)h−1µ

1− (a + b)2 , h ≥ 1.
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Previous Work 5

1. All moments of model (1) are finite if and only if 0 ≤ a + b < 1.

2. Notice that

Var[Yt ] = µ

(
1 +

b2

1− (a + b)2

)
.

Therefore Var[Yt ] ≥ E[Yt ] with equality when b = 0. This is a case of
overdispersion.
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Previous Work 5

1. Model (1) is related to the theory of generalized linear models for time
series, see Ch. 1 and 4 of Kedem and Fokianos (2002). They fall under
the framework of observation driven models, Cox (1981).

2. Observation driven models for time series of counts have been studied
by several authors including Zeger and Qaqish (1988), Li (1994),
Brumback et al (2000), Fahrmeir and Tutz (1994), Benjamin et al (2003),
Davis et al (2003) and Jung et al (2006).

3. A log–linear model for the mean of the observed process is usually
assumed and its structure is composed by past values of the response,
moving average terms and other explanatory variables.

4. Davis et al (2003) considers a simple but important case of a log-linear
model and shows ergodicity of the observed process.
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Our Contribution

(1) Show geometric ergodicity for INGARCH(1,1) models.

(2) Study likelihood inference for INGARCH(1,1) models.

(3) Study geometric ergodicity for a log–linear model to be discussed next.

(4) Study likelihood inference for a log–linear models.

(5) Apply all models to the transactions data.
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Rephrasing the model

To study model (1) for each time point t , introduce a Poisson process Nt(·) of
unit intensity. Then, we can assume that Yt is equal to the number of events
Nt(λt) of Nt(·) in the time interval [0, λt ]. Let therefore {Nt(·), t = 1, 2, . . .} be
a sequence of independent Poisson process of unit intensity and rephrase (1)
as

Yt = Nt(λt), λt = d + aλt−1 + bYt−1, (2)

for t ≥ 1 and with Y0, λ0 fixed.



Perturbed Linear Models 1

We resort to the perturbed chain (Y m
t , λ

m
t ) defined by

Y m
t = Nt

(
λm

t
)
, λm

t = d + aλm
t−1 + bY m

t−1 + εt,m, (3)

with λm
0 , Y m

0 fixed, and

εt,m = cm1
(
Y m

t−1 = 1
)

Ut , cm > 0 , cm → 0, as m→∞,

where 1(·) is the indicator function, and where {Ut} is a sequence of iid
uniform random variables on (0, 1) and such that the {Ut} is independent of
{Nt(·)}.



Perturbed Linear Models 2

1. The perturbation in (3) is a purely auxiliary device to obtain
φ–irreducibility.

2. The perturbation can be introduced in many other ways. For, instance, it
is enough to set {Ut} to be an i.i.d sequence of positive random
variables with bounded support possessing density on the positive real
axis with respect to the Lebesgue measure and finite fourth moment.

3. The form of the likelihood functions for {Yt} and {Y m
t } as far as

dependence on {λt} is concerned will be the same for both models (2)
and (3).
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Linear Model 3

Proposition
Consider model (3) and suppose that 0 < a + b < 1. Then the process
{λm

t , t ≥ 0} is a geometrically ergodic Markov chain with finite moments of
order k, for an arbitrary k.

We show that
I {λm

t , t ≥ 0} is aperiodic and φ–irreducible.

I There exists a small set C and a test function V (·) which satisfies

E[V (λm
t )|λm

t−1 = λ] ≤ (1− k1)V (λ) + k21(λ ∈ C)

for some constants k1, k2 such that 0 < k1 < 1, 0 < k2 <∞.
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Linear Model 4

Proposition
Consider model (3) and suppose that the conditions of Proposition 3.1 hold.
Then the process {(Y m

t , λ
m
t ,Ut), t ≥ 0} is a V(Y ,U,λ)–geometrically ergodic

Markov chain with VY ,U,λ(Y ,U, λ) = 1 + Y k + λk + Uk .

Use the method of Meitz and Saikokonen (2008) to show that geometric
ergodicity of the {λm

t } process implies geometric ergodicity of the chain
{(Y m

t ,Ut , λ
m
t )}.



Linear Model 5

However, the following holds:

Lemma
Suppose that (Yt , λt) and (Y m

t , λ
m
t ) are defined by (2) and (3) respectively. If

0 ≤ a + b < 1, then the following statements hold:

1. |E (λm
t − λt)| = |E (Y m

t − Yt)| ≤ δ1,m,

2. E (λm
t − λt)

2 ≤ δ2,m,

3. E (Y m
t − Yt)

2 ≤ δ3,m,

where δi,m → 0 as m→∞ for i = 1, 2, 3. Furthermore, almost surely, with m
large enough∣∣λm

t − λt
∣∣ ≤ δ and

∣∣Y m
t − Yt

∣∣ ≤ δ, for any δ > 0.
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Log–Linear Model 1

Suppose again that Yt is a time a series of counts and set

νt = logλt .

We study the following family of log-linear models

Yt | FY ,ν
t−1 ∼ Poisson(νt), νt = d + aνt−1 + b log(Yt−1 + 1), (4)

for t ≥ 1.



Log–Linear Model 2

I We choose to work with a log-linear model which includes an one-to-one
transformation of the data.

I Each datum is increased by one unit. Hence, we avoid zero data values.
In this sense both λt and Yt−1 are transformed into the same scale.

I In addition, we note that covariates can be accommodated by model (2)
by including them in the second equation.
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Log–Linear Model 3
Two hundred realizations and their sample autocorrelation function from
model (4 for different parameter values. d = 0.5,a = −0.5 and b = 2/3.
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Log–Linear Model 4
Two hundred realizations and their sample autocorrelation function from
model (4 for different parameter values. d = 0.5, a = 0.5 and b = 1/3.
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Log–Linear Model 5
Two hundred realizations and their sample autocorrelation function from
model (4 for different parameter values. d = 0.5, a = −3/4, and b = −3/8.
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Log–Linear Model 6

The perturbed chain (Y m
t , ν

m
t ) is defined by

Y m
t = Nt(λ

m
t ) = Nt(exp(νm

t )) νm
t = d + aνm

t−1 + b log(Y m
t−1 + 1) + εt,m, (5)

with νm
0 , Y m

0 fixed, and

εt,m = cm1
(
Y m

t−1 = 1
)

Ut , cm > 0 , cm → 0, as m→∞,



Log–Linear Model 7

Proposition
Assume model (3) and suppose that | a |< 1. In addition, assume that when b > 0
then |a + b| < 1, and when b < 0 then |a||a + b| < 1. Then, the following
conclusions hold:

1. The process {νm
t , t ≥ 0} is a geometrically ergodic Markov chain with finite

moments of order k , for an arbitrary k .

2. The process {(Y m
t ,Ut , ν

m
t ), t ≥ 0} is a V(Y ,U,ν)–geometrically ergodic Markov

chain with VY ,U,λ(Y ,U, ν) = 1 + log2k (1 + Y ) + ν2k + U2k , k being a
positive integer.



Log–Linear Model 8

It can be also proved that the difference between (4) and (5) is negligible, as
m→∞ such that cm → 0. This fact is proved under the conditions that

|a + b| < 1,

if a and b have the same sign, and

a2 + b2 < 1

if they have different signs. These conditions are quite restrictive when
compared to the conditions for geometric ergodicity. It is likely that they can
be weakened to at least |a + b| < 1 for all possible cases of signs and
possibly to the generality of the ergodicity conditions. In many applications it
seems that a > 0 and b > 0 in which case, of course, the above condition is
the same as the ergodic one, that is |a + b| < 1



Inference for the Linear Model 1

The log–likelihood function is given up to a constant, by

ln(θ) =
n∑

t=1

lt(θ) =
n∑

t=1

(yt logλt(θ)− λt(θ)) , (6)

and the score function is defined by

Sn(θ) =
n∑

t=1

(
Yt

λt(θ)
− 1
)
∂λt(θ)

∂θ
, (7)

where ∂λt(θ)/∂θ is a three-dimensional vector with components given by

∂λt

∂d
= 1 + a

∂λt−1

∂d
,

∂λt

∂a
= λt−1 + a

∂λt−1

∂a
,

∂λt

∂b
= Yt−1 + a

∂λt−1

∂b
. (8)



Inference for the Linear Model 2

The Hessian matrix is

Hn(θ) =
n∑

t=1

Yt

λ2
t (θ)

(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)′

−
n∑

t=1

(
Yt

λt(θ)
− 1
)
∂2λt(θ)

∂θ∂θ′ . (9)



Inference for the Linear Model 3

I We do not know precisely what conditions guarantee ergodicity of (2).

I However, the assumptions of Proposition 3.2 guarantee geometric
ergodicity of the perturbed model (Y m

t , λ
m
t ).

I In addition, Lemma 1 shows that λm
t approaches λt , for large m.

It is rather natural to use the ergodic properties of the perturbed process
(Y m

t , λ
m
t ) to study the asymptotic properties of the maximum likelihood

estimators analogous to (7) and then use Lemma 1.
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Inference for the Linear Model 3

Define the counterparts of expressions (6)-(9) for model (3).
The log likelihood function is given up to a constant by

lm
n (θ) =

n∑
t=1

(
yt logλm

t (θ)− λm
t (θ)

)
+

n∑
t=1

log fu(ut), (10)

whereas the score function is equal to

Sm
n (θ) =

n∑
t=1

(
Y m

t

λm
t (θ)

− 1
)
∂λm

t (θ)

∂θ
, (11)

and is seen to have exactly the same form as (7), but with λt(θ) replaced by
λm

t (θ).



Inference for the Linear Model 4

Similarly,

Hm
n (θ) =

n∑
t=1

Y m
t

(λm
t (θ))2

(
∂λm

t (θ)

∂θ

)(
∂λm

t (θ)

∂θ

)′

−
n∑

t=1

(
Y m

t

λm
t (θ)

− 1
)
∂2λm

t (θ)

∂θ∂θ′ . (12)



Inference for the Linear Model 5

To study the asymptotic properties of the maximum likelihood estimator θ̂, for
the linear model (2) we derive and use the asymptotic properties of the
maximum likelihood estimator θ̂m for the perturbed linear model (3).

Proposition
(Prop. 6.3.9 of Brockwell and Davis (1991)) Let Xn, n = 1, 2, . . . and Ynm,
m = 1, 2, . . ., n = 1, 2, . . . be random k-vectors such that

1. Ynm
D→ Ym, as n→∞, for each m = 1, 2, . . . ,

2. Ym
D→ Y, as m→∞, and

3. limm→∞ lim supn→∞ P[|Xn − Ynm| > ε] = 0, for every ε > 0.

Then
Xn

D→ Y as n→∞.



Inference for the Linear Model 6

Theorem
Consider model (2) and suppose that at the true value θ0, 0 < a0 + b0 < 1.
Then, there exists a fixed open neighborhood O = O(θ0) of θ0 such that with
probability tending to one, as n→∞, the log likelihood function (6) has a
unique maximum point θ̂.

Furthermore, θ̂ is consistent and asymptotically
normal, √

n
(
θ̂ − θ0

)
D→ N (0,G−1)

A consistent estimator of G is given by Gn(θ̂), where

Gn(θ) =
n∑

t=1

Var
[
∂lt(θ)
∂θ

| Ft−1

]
=

n∑
t=1

1
λt(θ)

(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)′
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Inference for the Linear Model 7

Lemma
Define the matrices

Gm(θ) = E
(

1
λm

t

(
∂λm

t

∂θ

)(
∂λm

t

∂θ

)′)
G(θ) = E

(
1
λt

(
∂λt

∂θ

)(
∂λt

∂θ

)′)
.

Under the assumptions of Theorem 2, the above matrices evaluated at the
true value θ = θ0 satisfy

Gm → G,

as m→∞. In addition, Gm and G are positive definite.



Inference for the Linear Model 8

Lemma
Under the assumptions of Theorem 2, the score functions defined by (7) and
(11) and evaluated at the true value θ = θ0 satisfy the following:

1.
1√
n

Sm
n

D→ Sm := N
(
0,Gm), as n→∞ for each m = 1, 2 . . .

2. Sm D→ N (0,G) as m→∞
3. limm→∞ lim supn→∞ P

(
|Sm

n − Sn| > ε
√

n
)

= 0, for every ε > 0.



Inference for the Linear Model 8

Lemma
Under the assumptions of Theorem 2, the score functions defined by (7) and
(11) and evaluated at the true value θ = θ0 satisfy the following:

1.
1√
n

Sm
n

D→ Sm := N
(
0,Gm), as n→∞ for each m = 1, 2 . . .

2. Sm D→ N (0,G) as m→∞

3. limm→∞ lim supn→∞ P
(
|Sm

n − Sn| > ε
√

n
)

= 0, for every ε > 0.



Inference for the Linear Model 8
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Inference for the Linear Model 9

Lemma
Under the assumptions of Theorem 2, the Hessian matrices defined by (9)
and (12) and evaluated at the the true value θ = θ0 satisfy the following:

1.
1
n

Hm
n

P→ Gm as n→∞ for each m = 1, 2 . . .,

2. Gm → G, as m→∞,

3. limm→∞ lim supn→∞ P (‖Hm
n − Hn‖ > εn) = 0, for every ε > 0.
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Inference for the Log–Linear Model 1

For the log–linear we obtain that the score function is derived as

Sn(θ) =
∂l(θ)
∂θ

=
n∑

t=1

∂lt(θ)
∂θ

=
n∑

t=1

(Yt − exp(νt(θ)))
∂νt(θ)

∂θ
, (13)

where

∂νt(θ)

∂d
= 1 + a

∂νt−1(θ)

∂d
∂νt(θ)

∂a
= νt−1(θ) + a

∂νt−1(θ)

∂a
(14)

∂νt(θ)

∂b
= g(Yt−1) + a

∂νt−1(θ)

∂b
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Inference for the Log–Linear Model 2

The Hessian matrix is given by

Hn(θ) = −
n∑

t=1

∂2lt(θ)
∂θ∂θ′

=
n∑

t=1

exp(νt(θ))

(
∂νt(θ)

∂θ

)(
∂νt(θ)

∂θ

)′

(15)

−
n∑

t=1

(Yt − exp(νt(θ)))
∂2νt(θ)

∂θ∂θ′ . (16)

Prove consistency and asymptotic normality of MLE along the previous lines.



Simulation for Linear Model 1

Estimators and their mean square error (in parentheses) for model (2) when
(d0, a0, b0) = (0.3, 0.4, 0.5) and for different sample sizes by both maximum
likelihood and least squares methods. Results are based on 1000
simulations.

Sample Size MLE LSE
n d̂ â b̂ d̂ â b̂
200 0.3713 0.3756 0.4967 0.3909 0.3790 0.4863

(0.1429) (0.0940) (0.0749) (0.1589) (0.1052) (0.0841)
500 0.3271 0.3923 0.4971 0.3318 0.3922 0.4932

(0.0803) (0.0548) (0.0443) (0.0949) (0.0657) (0.0532)
1000 0.3148 0.3954 0.4985 0.3180 0.3951 0.4965

(0.0505) (0.0380) (0.0314) (0.0633) (0.0452) (0.0373)



Simulation for Linear Model 2

Comparison of standard errors for model (2) with (d0, a0, b0) = (0.3, 0.4, 0.5).

Sample Size Simulated standard errors Standard Errors from G(θ0)
n d a b d a b
200 0.1429 0.0940 0.0749 0.0937 0.0733 0.0593
500 0.0803 0.0548 0.0443 0.0574 0.0459 0.0372
1000 0.0505 0.0380 0.0314 0.0403 0.0323 0.0263



Simulation for Linear Model 3

Histograms and qq-plots of the sampling distribution of θ̂ = (d̂ , â, b̂) for the linear
model (2) when the true values are (d0, a0, b0) = (0.3, 0.4, 0.5). The results are based
on 500 data points and 1000 simulations.
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Simulations for Log-Linear Model 1

d = 0.5, a = −0.50, b = 0.65
Parameters Sample Size MLE Standard Error Skewness Kurtosis p-value

d0 200 0.501 0.187 0.269 3.226 0.443
a0 -0.505 0.130 0.451 3.695 0.023
b0 0.651 0.104 0.064 3.033 0.883
d0 500 0.498 0.114 0.187 2.842 0.224
a0 -0.497 0.081 0.208 3.502 0.578
b0 0.649 0.063 0.087 2.942 0.556
d0 1000 0.501 0.079 0.077 2.898 0.728
a0 -0.500 0.055 0.155 3.254 0.936
b0 0.649 0.045 0.022 2.819 0.477



Simulations for Log-Linear Model 2

d = 0.5, a = −0.50, b = −0.35
Parameters Sample Size MLE Standard Error Skewness Kurtosis p-value

d0 200 0.488 0.113 -0.458 3.902 0.078
a0 -0.375 0.303 1.655 6.775 0.000
b0 -0.370 0.123 -0.072 3.304 0.982
d0 500 0.492 0.066 -0.019 2.927 0.957
a0 -0.469 0.149 1.057 6.340 0.000
b0 -0.353 0.075 -0.112 2.843 0.674
d0 1000 0.499 0.046 -0.109 2.851 0.806
a0 -0.485 0.102 0.494 3.961 0.295
b0 -0.353 0.054 -0.082 2.871 0.697



Simulations for Log-Linear Model 3
From top to bottom: Histograms and qq-plots of the standardized sampling distribution
of θ̂ = (d̂ , â, b̂) for the log–linear model (4) when the true values are
(d0, a0, b0) = (0.50,−0.50, 0.65). The results are based on 500 data points and 1000
simulations. From top to the bottom d̂ ; â; b̂.
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Transactions Data 1

The linear model (2) yields the following results:

λ̂t = 0.5808 +0.7445 λ̂t−1+ 0.1986 Yt−1

(0.1628) (0.0264) (0.0167)

Define the Pearson residuals

et = (Yt − λt)/
√
λt



Transactions Data 2
Top: Observed and predicted (gray) number of transactions per minute using (2).
Bottom: Cumulative periodogram plot of the Pearson residuals.
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Transactions Data 3

The log–linear model is fitted as

ν̂t = 0.1051 +0.7465 ν̂t−1+ 0.2072 Yt−1

(0.0345) (0.0266) (0.0194)



Transactions Data 4
Top: Prediction for the log-linear model. Center: Time series plot of Pearson residuals
Bottom: Cumulative periodogram plot of the Pearson residuals.
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Transactions Data 5

To compare the models, we calculate the mean square error of the Pearson
residuals defined by

N∑
t=1

e2
t /(N − p),

where p is the number of estimated parameters.
It turns out that

1. For the linear model the mean square error of the Pearson residuals is
equal to 2.3686

2. For the log–linear model the mean square error of the Pearson residuals
is equal to 2.3911

All of the models yield similar conclusions.
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Motivating Example 1
� Discovery of Periodically Expressed Genes

– Spectral domain techniques have 
been used for automatic transcription 
of gene expression profiles to identify 
periodically expressed genes in 
gnome-wide time-course studies of a 
wide range of organisms. 

– Outlier contamination degrades the 
identification results.

– Periodically expressed genes contribute to the 
mechanisms that regulate the cell-division cycle 
which consists of a series of events that take place 
in an eukaryotic cell leading to its replication with 4 
distinct phases: G1, S, G2, M.  
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Motivating Example 2
� Heart Rate Variability (HRV) Analysis

– The beat-to-beat alterations in heart rate, measured 
from ECG records, reflect the activity of the autonomic 
nervous system in regulating the cardiac rhythm.

Spangl & Dutter (2007)

– Spectral analysis techniques have 
been applied to HRV data in studying 
the relationship between HRV and 
various physiological conditions.

– Short-term studies rely on manual 
cleaning and editing of HRV records.

– Automatic analysis of long-term HRV 
records requires robust methods to 
cope with inevitable contamination by 
ectopic events and artifacts.
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Robust Spectral Analysis
� Covariance Method: Fourier Analysis of Autocovarian ces

variance sample ationautocorrel sample -lag 

 anceautocovari sample -lag)(r̂

÷=
=
�
��

∑= )cos()(r̂)(w)(f̂ �����

� Robustification Against Outliers
– Outliers due to measurement errors or heavy-tailed distributions of 

the underlying physical processes

– Manually identify and clean anomalous data points

– Replace sample autocovariances with robust alternatives insensitive 
to outliers

∑∑ == )cos()()cos()(r)(f ��������� 2 (power spectrumpower spectrum)
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Direct Method of Spectral Analysis
� Fourier Analysis of Time Series Samples 

Jean Baptiste Joseph Fourier
(1768-1830)

s)frequencie Fourier(n/k
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“Multiplying both sides by cos(ωkt) and then 
summing from 1 to n yields:” – Fourier, 1822

� Calculation of Fourier Coefficients
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Periodogram

� Schuster’s Periodogram (1898) 

Sir Arthur Schuster
(1851-1934)

2

1

122 �
4
1� ∑

=

− −=+=
n

t
ktkkkn )itexp(Yn)BA(n)(G

� Periodogram of Sunspot Numbers
“The periodogram of sunspots would show a ‘band’ in the 
neighborhood of a period of eleven years.” – Schuster, 1898
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Spectral Estimation

� Periodogram Smoothing
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– Smoothing parameter m can be selected 
by, e.g., minimizing the generalized cross-
validation criterion (Ombao et al. 2001):

Emanuel Parzen

– If {wmj} � {δj} but too fast as                         then,)n(mm ∞→=
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Statistical Distribution

� Asymptotic Theory
– {Yt } is a zero-mean random process, stationary in second moments with a  stationary in second moments with a  

continuous spectrumcontinuous spectrum f(ω). Under certain weak serial dependent conditions 
(e.g., m-dependent, mixing) and as              (Brockwell & Davis 1991),n ∞→

2
2

2
2
1 ���� )(R~)(G kkn )k'(k)(G)(G k'nkn ≠⊥ ��

ρ(τ) = E(YtYt-τ)/σ2 = lag-τ autocorrelation, σ2 = Var(Yt)

spectrum ationautocorrel )cos()()(R == ∑ �����

spectrum power})R(E{ )(R)(f 2
2
1 === 2

2
2 ������
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Application of Spectral Analysis

� Detection of Hidden Periodicity
– {Yt } = sinusoidal signal with unknown frequency and 

amplitude + noise process with continuous spectrum f(ω). 
The sinusoid can be detected by FisherFisher’’s tests test

���
�� ≥=

∑k kkn

kknk

)(f̂/)(G

)(f̂/)(Gmax
g

where         is an estimator of the noise spectrum f(ω) from training data)(f̂ �

Ronald A. Fisher
(1890-1962)

Without Normalization by Noise Spectrum With Normalization by Noise Spectrum
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Sensitivity to Outliers and Nonlinear Distortion

))(f/)(f(   :divergence spectral of Measure KL ��� 01
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Least Squares Reformulation

� Method of Least Squares (LS) 
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Carl Friedrich Gauss
(1777-1855)

Adrie Marie Legendre
(1752-1833)
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� Gauss Maximum Likelihood Estimation
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Least Absolute Deviations

� Method of Least Absolute Deviations (LAD) 
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Pierre Simon Laplace
(1749-1827)

Roger Joseph Boscovich
(1711-1787)
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� Laplace Maximum Likelihood Estimation 
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� Laplace Periodogram
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Measurement of Errors: L2 Norm vs L1 Norm

data

Best L2-Norm Model

Best L1-Norm Model

Other Models

Error Composition:
e1 = 0
e2 = 3.2

Error Composition:
e1 = -2
e2 =  2
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Laplace Periodogram of Sunspot Numbers

Laplace periodogram need to be 
smoothed in the same way as 
the ordinary periodogram.
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What Is Laplace Periodogram?

� Question
– The ordinary (Gauss) periodogram estimates the power spectrum which 

is the Fourier transform of the autocovariance function of the underlying 
random process.

– What does Laplace periodogram estimate?

– Does it represent serial dependence in some way?

� Challenge
– No closed-form expression

– Cannot compute the mean and variance 
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Statistical Theory
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� Distribution of the Sample Median
– Let { Yt } be IID with Yt ~ F, F(0) = 1/2, F
(0) > 0.

(sparsitysparsity)

� Distribution of LAD Regression (Bassett & Koenker 19 78)
– Let                         with { εt} ~ IID F, F(0) = 1/2, F
(0) > 0.  t
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Statistical Theory
� Distribution of the Laplace Periodogram (Li 2008)

– Let { Yt } be a random process with Yt ~ F, F(0) = 1/2, F
(0) > 0. Let

T
t

n

t

T
tt

R
n )]tsin(),t[cos()(,|)(Y|minarg)(ˆ

2
�����

1

=−= ∑
=∈
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�

I)S()(,)}('F{)),(,(N)(ˆn D
n �2�021���0� 222 ==→ DD�

2
2

2
2
1 ���� )(Z~)(Ln )'kk()(L)(L 'knkn ≠⊥ ��

Under certain conditions of stationarity (e.g., strictly stationary) and weak serial 
dependence (e.g., m-dependent, mixing), 

– Important Note: The result does not require the existence of moments and 
hence is applicable to heavy-tailed random processes of infinite variance.
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Statistical Theory
� Comparison with the Gauss Periodogram

S(ωωωω)     ???R(ωωωω)  (autocorrelation spectrum)

fL(ωωωω) ==== ηηηη2 S(ωωωω):  Laplace spectrumfG(ωωωω) ==== σσσσ2 R(ωωωω)  (power or Gauss spectrum)

ηηηη2  (sparsity)σσσσ2 (variance)

2
2

2
2
1 ���� )(S~)(Ln

)'kk()(G)(G 'knkn ≠⊥ �� )'kk()(L)(L 'knkn ≠⊥ ��

2
2

2
2
1 ���� )(R~)(Gn
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Zero-Crossing Spectrum

� Zero-Crossing Spectrum (ZCS)

� Stationarity in Zero Crossings
– {Yt } is stationary in zero crossingsstationary in zero crossings iff for any t,

)()YY(P tt ��0� =<−

– If {Yt } is stationary in zero crossings, then

For white noise, 1�2
1�� � =⇒−= )(S/)()(

Benjamin Kedem

“The number of zero-crossings 
observed in a finitely long real-
valued time series may be review 
as a measure of the oscillation 
exhibited by the time series.”

“Zero-crossings have a certain 
advantage in the presence of 
outliers.”

“Another example where zero-
crossings have an advantage is 
when the process is strictly 
stationary but has no moments.”

Kedem, 1994

(laglag--ττ zerozero--crossing ratecrossing rate)

2�1�� /))(r()( Z−= )Z,Z(Cov)(r ttZ �� −=

}/)Y({Z tt 2102 −<= � (zerozero--crossing processcrossing process)

∑∑
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−∞=

∞

−∞=
=−=
��

�������21� )cos()(r)cos())(()(S Z
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Zero-Crossing Spectrum

� Zero-crossing spectrum depicts the serial dependenc e of time 
series from a different perspective. 

– For elliptically distributed processes that are stationary in second moments,  

))(arcsin()/(/)( ���121�� −=

∑
∞

−∞=
=
�

����� )cos()()(R

∑
∞

−∞=
=
�

�����2� )cos())(arcsin()/()(S

– The one-to-one relationship has been exploited to estimate the power spectrum 
from clipped Gaussian processes (Hinich 1967, McNeil 1967, Brillinger 1968).

Arcsine formula:Arcsine formula:

ZCS:ZCS:

Compare with
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Zero-Crossing Spectrum

� Invariance to Nonlinearity
– Let Φ(.) be a monotone monotone function such that Φ(0)=0 and Φ’(0)=c > 0.

)(fc)(f Y,L)Y(,L �� 2
� =

)(S)(S Y)Y( ��� = (unchanged)unchanged)

(simple scaling)simple scaling)

(complicated functional)complicated functional)

For autocorrelation spectrum and power spectrum,

)(f)(f),(R)(R Y,G)Y(,GY)Y( ���� �� ∝∝\ \



T. J. Watson Research Center

July 30-31, 2009,  University of Maryland, College Park 24/38

Gauss vs. Laplace

Less efficient for light-tailed noiseMore efficient for light-tailed noise

More efficient for heavy tailed noise     Less efficient for heavy tailed noise

Robust to outliersSensitive to outliers

Slower algorithmFast algorithm

Possibly multiple solutionsUnique solution

Robust to nonlinearitySensitive to nonlinearity

Laplace PeriodogramGauss Periodogram
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Robustness to Outlier and Impulsive Noise
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Robustness to Nonlinearity and Quantization Noise
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Detection of Hidden Periodicity in Heavy-Tailed Noise

unknown ,  ,)(Y:H 0t
T

tt 0001 �	� ��x +=

Laplace-Fisher Detector : H1 iff gL > θLGauss-Fisher Detector : H1 iff gG > θG

noise  whiteIID~}{  ,Y:H ttt 		0 =

Uniform

Gaussian

Student’s T(3)

Cauchy
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Generalization: Least Lp Norm Criterion

� Method of Least Lp Norm (LLP) 
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� Generalized Gaussian Maximum Likelihood Estimation 
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� The Lp-Norm Periodogram
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Generalization: Spherical Processes 

� Laplace’s Spherical Harmonics Expansion
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Sensitivity to Outliers

p=1

p=2

Spectral Distortion due to a Single Outlier
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Tradeoff: Robustness vs. Efficiency for Periodicity Detection 

Uniform

Gaussian

Student’s T(3)

Cauchy

L1.5
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Tradeoff: Robustness vs. Leakage of Line Spectrum for Mixed 
Spectrum Analysis

L1.5

Gaussian Noise

Heavy-Tailed Noise

Low Noise
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Clustering of Gene Expression Profiles
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Clustering of Gene Expression Profiles
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Clustering of Gene Expression Profiles L1.5
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Time-Frequency Analysis of Heart Rate Variability
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Summary

� Obtained Laplace periodogram by replacing the L2 norm (least squares) 
criterion with the L1 norm (least absolute deviations) criterion in the linear 
harmonic regression

� Demonstrated robustness to outliers and nonlinear distortion

� Established the link to the zero-crossing spectrum

� Generalized to Lp norm periodogram

� Choice of p depends on the desirable performance tradeoffs in practice
– Robustness, efficiency, leakage of line spectrum, computation, etc.

� Future work
– Theory for long-range dependent processes

– Parametric and nonparametric inference based on Laplace and Lp-Norm 
periodograms (Whittle’s pseudo likelihood)

– FFT-like fast algorithms
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Thank You!
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Introduction.

NCHS publishes sex- and race-specific state decennial life
tables for all states and DC.
Problems arise in States with small subpopulations.
In States with small subpopulations, observed mortality
rates are often interrupted by gaps of zero death
observations, especially in young ages.
Mortality rates (death rates) are reported routinely in a log
scale.
Problem #1: How do we treat the zero values?
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Introduction.

In the process of generating the life tables, age-specific
mortality rates are estimated and smoothed.
One way to smooth mortality data is by using the
Heligman-Pollard parametric model.
Problem #2: Parametric models often use data on
logarithmic scale.
Problem #3: Small populations raise concerns regarding
reliability of their mortality rate estimates and fidelity of
mortality patterns after smoothing.
In one fifth of the states, life tables were not published for
some subpopulations previously due to small size of
population.
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Example: Black Females, CA, 2000.
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Figure 1: Observed non-zero log deathrates for black females living in
California in 2000. Total Number of deaths: 6426, ages 1-84.
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Example: Black Females, NV, 2000.
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Figure 2: Observed non-zero log deathrates for black females living in
Nevada in 2000. Total Number of deaths: 318, ages 1-84
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Example: Black Females, NV, 2000.
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Figure 3: Observed non-zero log deathrates for black females living in
Nevada in 1970-2002.
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Introduction.

Fact: As a biological feature of the human population, the
age specific death rates should be continuous and nonzero
without the interruption of a zero death rate.
Problem: Reliable estimation of zero death rates in states
with small population size.
Solution: Fit appropriate probability models supported
discretely at zero. Replace zero observations with
expected values.
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Theory and Methods
Data Analysis

Outline of Part I

1 Theory and Methods
Main Idea: Mixed Distribution
Model 1: Mixed Lognormal Distribution
Model 2: Hurdle Model
Model 3: Zero-Inflated Model
Model 4: Poisson Regression
Construction of Confidence Intervals
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Introduction
Outlines

Theory and Methods
Data Analysis

Outline of Part II

2 Data Analysis
Data and Selection of Models
Example: Black Females, CA, 2000
Example: Black Females, NV, 2000
Model Comparison
Smoothing the data: The Heligman-Pollard model
Conclusions
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Theory and Methods

Part I

Theory and Methods
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Theory and Methods

Main Idea: Mixed Distribution
Model 1: Mixed Lognormal Distribution
Model 2: Hurdle Model
Model 3: Zero-Inflated Model
Model 4: Poisson Regression
Construction of Confidence Intervals

Main Idea: Mixed Distribution.

Let Y be the variable of interest. A natural model for Y is a
mixed distribution probability model:

Y =

{
0, with probability 1− p

F (y ,θ1), with probability p

Then,

P(Y ≤ y) = Gm(y ; p,θ1) = (1− p)H(y) + pF (y ; θ1) (1)

where H(y) is a step function:

H(y) =

{
0, y < 0
1, y ≥ 0
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Theory and Methods

Main Idea: Mixed Distribution
Model 1: Mixed Lognormal Distribution
Model 2: Hurdle Model
Model 3: Zero-Inflated Model
Model 4: Poisson Regression
Construction of Confidence Intervals

Main Idea: Mixed Distribution.

The corresponding generalized pdf is:

gm(y ; p,θ1) = (1− p)1−I[y>0][pf (y ; θ1)]
I[y>0], y ≥ 0 (2)

where f (y ; θ1) is a probability density function conditional on
Y > 0 and corresponding to F (y ; θ1), and I(A) is the indicator
of the event A.
The goal is to estimate

E(Y ) = pE(Y | Y > 0) (3)
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Theory and Methods

Main Idea: Mixed Distribution
Model 1: Mixed Lognormal Distribution
Model 2: Hurdle Model
Model 3: Zero-Inflated Model
Model 4: Poisson Regression
Construction of Confidence Intervals

Model 1: Mixed Lognormal Distribution.

Let Y denote death rate. The continuous part of the distribution
of death rate is lognormal LN(µ, σ2), with density,

f (y ;µ, σ) =
1√

2πσy
exp{−(log y − µ)2/(2σ2)}, y > 0 (4)

The mean of Y is:

E(Y ) = p exp{µ+ σ2/2}, (5)

Using the maximum likelihood we can estimate (5).
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Theory and Methods

Main Idea: Mixed Distribution
Model 1: Mixed Lognormal Distribution
Model 2: Hurdle Model
Model 3: Zero-Inflated Model
Model 4: Poisson Regression
Construction of Confidence Intervals

Estimation of the Variance for Mixed Lognormal
Distribution.

The Var.-Cov. matrix of estimates is obtained from I−1
f :

I f = −E
(
∂2 log g(y ,θ)

∂θ∂θ′

)
(6)

Then

Var(p̂) = p(1− p)/n, Var(µ̂) = σ2/(np), Var(σ̂) = σ2/(2np)

For the mixed lognormal,

Var(Ê(Y )) ≈ 1
n

exp(2µ+ σ2)[p(1− p) + pσ2 + pσ4/2] (7)

Then approximate 95% confidence intervals can be calculated as

Ê(Y )± 1.96 ·
√

V̂ar(Ê(Y )).
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Theory and Methods

Main Idea: Mixed Distribution
Model 1: Mixed Lognormal Distribution
Model 2: Hurdle Model
Model 3: Zero-Inflated Model
Model 4: Poisson Regression
Construction of Confidence Intervals

Model 2: The Hurdle Model.

Let Y denote the number of deaths. Hurdle models are
two-component models:

fhurdle(y ;µ) =

{
1− p, y = 0
p · fcount(y , µ)/(1− fcount(0, µ)), y > 0 (8)

If the count component is modeled as zero-truncated Poisson(µ), then

E(Y ) =
pµ

1− exp(−µ)

Estimate µ using a GLM model.
Estimate p using a binomial GLM model.
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Estimation of the Variance for Hurdle Model.

It can be shown that:

Var(Y ) = P(Y > 0)Var(Y | Y > 0) + P(Y > 0)(1− P(Y > 0))(E(Y | Y > 0))2. (9)

If the count component is modeled as zero-truncated Poisson(µ):

Var(Y ) = p
[

2µ2

1− e−µ
− µ2

(1− e−µ)2

]
+ p(1− p)

(
µ

1− e−µ

)2

(10)

Then an approximate 95% confidence interval for the mean number
of deaths for a given age and year is

Ŷ ± 1.96
√

V̂ar(Y ).
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Model 3: The Zero-Inflated Model.

Zero inflated models are two-component models where the
count distribution is supported at zero as well.
The probability of a zero is constructed from two sources:

1 The point mass at zero
2 The count distribution.

The distribution of the number of deaths Y is modeled as

fzeroinfl(y ;µ) = πI{0}(y) + (1− π)fcount(y ;µ), y = 0,1,2, . . . ,
(11)

where π ≡ 1− p is the unobserved probability of belonging to
the point mass component.
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Model 3: The Zero-Inflated Model.

π can be modeled using binomial GLM.
The count component can be modeled as Poisson GLM. Then

E(Y ) = pµ.

If the count component is Poisson distribution with mean µ then
directly from (9) the approximate 95% confidence interval for
the mean number of deaths is

Ŷ ± 1.96
√

p̂µ̂+ p̂(1− p̂)µ̂2.
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Model 4: Poisson Regression.

We assume that Y , the number of deaths, follows a Poisson(µ):

f (y ;µ) =
exp(−µ)µy

y !
, y = 0,1,2 . . .

Then E(Y ) = µ.

Estimate µ by using Poisson GLM with log link.
Estimate Var(µ̂) using the Fisher Information matrix.
If there is overdispersion in the data, then we assume that
Y follows a negative binomial distribution.
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Parametric Bootstrap.

Parametric Bootstrap was used to construct 95% Confidence
Intervals on log(Ê(y)).

1 Create a sample of size n from the density fθ̂. Using the
generated sample, calculate the maximum likelihood
estimator θ̃ of θ and estimate Eθ(y) by Ẽθ̃(y). Calculate
log(Ẽθ̃(y)).

2 Repeat Step 1, B times.
3 Calculate the sample variance, s2, of the log(Ẽθ̃(y))

estimators.
4 Using the sample variance, s2, we can easily compute

95% confidence interval for log(Ê(y)).

For this problem: B = 1000, n = 33
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Data and Selection of Models.

We used data from NCHS public-use mortality files
Other Females, California, 1970-1998.
Black Females, California, Iowa, Minnesota, Nevada, New
Mexico, Nebraska, Oregon, and Rhode Island, 1970-2002.
Black Males, Iowa, Minnesota, Nevada, New Mexico,
Nebraska, Oregon, and Rhode Island, 1970-2002.
Variables available: population size, number of deaths, and
death rate for each year and age combination.

Selection and Comparison of Models: AIC ,BIC, RMSE, MAE
for Poisson, hurdle and zero-inflated models.
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Data and Selection of Models.

Root Mean Square Error (RMSE):√∑
ij(deathrate − ˆdeathrate)2

n
(12)

Mean Absolute Error (MAE):∑
ij | deathrate − ˆdeathrate |

n
, (13)

where i = 1 . . . 84 and j = 1970 . . . 2002.
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Figure 4: Observed non-zero log deathrates for black females living in
California in 2000.
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Figure 5: Model comparison for black females living in California in
2000.
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Figure 6: Observed non-zero log deathrates for black females living in
Nevada in 2000.
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Figure 7: Mixed Lognormal model: Black females, Nevada, 2000.
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Figure 8: Hurdle model: Black females, Nevada, 2000.
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Figure 9: Zero-Inflated model: Black females, Nevada, 2000.
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Figure 10: Poisson model: Black females, Nevada, 2000.
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Example: Black Females, NV, 2000.

Age Mixed Lognormal Poisson Hurdle Zero-Inflated
2 -7.245430 -7.080092 -6.941776 -7.079647
5 -8.149839 -7.922335 -7.598458 -7.921949
6 -8.149839 -8.695307 -8.368559 -8.695012
7 -8.967177 -8.706949 -8.040790 -8.706646
8 -8.967177 -8.697627 -8.215434 -8.697402
10 -9.069759 -9.589797 -9.188796 -9.589588
11 -9.964206 -9.558039 -9.201704 -9.557741
12 -9.964206 -8.427220 -8.249543 -8.426834
13 -7.892806 -8.106477 -7.995877 -8.106061
14 -7.892806 -8.241683 -8.125688 -8.241226
15 -8.127934 -7.970045 -7.889547 -7.969611
17 -7.176140 -7.408133 -7.262139 -7.407598
19 -7.290718 -7.303220 -7.219202 -7.302631
21 -6.867852 -6.933962 -6.901483 -6.933353
23 -7.185431 -7.144202 -7.152747 -7.143573
24 -7.185431 -7.347249 -7.256396 -7.346656
27 -6.959963 -6.918943 -6.922451 -6.918379

Table 1: Estimated expected values of log(death rates) provided by
the different models for black females living in NV, 2000.
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Example: Black Females, NV, 2000.

RMSE for NV Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed lognormal NA NA 3.582055 31.44193
Poisson 20.16510 1.143711 3.511821 31.56279
Hurdle Model 19.90017 1.139371 3.48776 31.14633
Zero-inflated Model 19.89754 1.139346 3.487707 31.14218
MAE for NV Total 1-30 yrs 31-50 yrs 51-84 yrs
Mixed lognormal NA NA 2.559315 18.61506
Poisson 8.349927 0.8000284 2.535445 18.43189
Hurdle Model 8.233534 0.7848666 2.502147 18.17729
Zero-inflated Model 8.233423 0.7848975 2.502137 18.17700

Table 2: Nevada RMSE and MAE. Black female, age 1-84, period
1970-2002. Entries are multiples of 10−3
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Model Comparison

The models give close estimates in all states and capture
the pointed hook pattern for lower ages.
In mixed lognormal, if the samples for some ages consist
only of zeros, then the model cannot produce estimates for
these particular ages.
For a small to medium number of zeros the simpler models
(mixed lognormal, poisson) perform sufficiently well.
For a large number of zeros, hurdle and zero inflated
models may be more appropriate.
Poisson vs. hurdle and zero-inflated models.
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If qx is the mortality rate for a person aged x exactly, then

qx

1− qx
= A(x+B)C

+ De−E(log x−log F )2
+ GHx , (14)

The values of the parameters can be estimated by least
squares using Gauss-Newton iteration:

S2 =
∑

x

(log(qx)− log(q̇x))2 (15)

where qx at age x is given by (14) and q̇x is a mixture of the
observed and estimated mortality rates.
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Figure 11: Fitted H-P curve: Black females, California, 2000.
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Figure 12: Comparison of H-P curves: Black females, Nevada, 2000.
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Conclusions

Advantages of fitting the H-P model:
1 Smooth data
2 Extrapolate death rates in elder ages, i.e. 80+, where the

reported ages being considered are not reliable.
3 Continuous interpolation of death rates between age

intervals
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Conclusions

We recommend a two-stage estimating/smoothing procedure:
1 Apply a suitable probability model on the data to get an

estimate of the zero mortality rates.
2 Apply the Heligman-Pollard equation on a mixture of the

estimated and actual data to obtain parameter estimates
and smooth the mortality curve, covering the whole life
span.

This procedure
1 permits more efficient, repeatable, and comparable results

in generating US life tables.
2 allows for the publication of more life tables even for states

with very small subpopulations.
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Outline

• Discuss case-control models for SNP data
• Robust models when inheritance 

uncertain
• Show bias of robust models

– Why does bias matter?
• Examine method of moments approach
• Examine conditional likelihood approach
• Conclusions/generalizations
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Case-Control/SNP Data Structure
• Very common genetic design– unrelated 

individuals
• SNP – Genetic information at 1 point in 

3x109 genome. At that location each 
person receives 1 SNP from mother & 1 
from father

• Each SNP has 2 flavors (alleles) denoted A 
and B =>  AA, or AB, or BB genotypes

• Q: Is one allele more often associated 
with a particular disease?
– Can elucidate disease/treatment pathways 2



• Each person has 1 of 
3 genotypes AA, AB, 
BB

• Obtain r cases 
(affected individuals) 
and s controls 
(healthy individuals)

3

Case-Control Design
AA AB BB Total

Cases r0 r1 r2 r

Controls s0 s1 s2 s

Total n0 n1 n2 n

• Let p0, p1, p2 denote genotype probabilities 
for cases, i.e. pi = Prob(i “B” alleles||Case)
• Estimate pi by ri/r 
• Let q0, q1, q2 denote probabilities for controls
• H0: p0= q0, p1= q1, p2= q2



Case-Control Design 

4

AA AB BB Total

Cases p0 p1 p2 1

Controls q0 q1 q2 1

• Could use Pearson χ2 2 df
• Other tests have more 

power
• Depends on mode of 

inheritance:
– Dominant 

• BB risk=AB risk > AA risk
– Recessive

• BB risk> AB risk = AA risk
– Additive ~ allele based test

• BB risk> AB risk > AA risk
• Compare on basis of alleles, 

not genotypes



Tests for Inheritance Mode 

5

AA AB BB Total

Cases r0 r1 r2 r

Controls s0 s1 s2 s

Total n0 n1 n2 n

Low
Risk

High 
Risk

AA AB&BB

Cases r0 r1+r2

Controls s0 s1+s2

Low Risk High 
Risk

A B

Cases r1 + 2r0 2r2 + r1

Controls s1 + 2s0 2s2 + s1

Low
Risk

High 
Risk

AA&AB BB

Cases r0 + r1 r2

Controls s0 + s1 s2

Dominance 2x2 table:
Risk AB = Risk BB

Additive 2x2 table: 
Compare “A” risk to “B” risk

Each 2x2 table leads to χ2 1 df test – more 
powerful than χ2 2 df test

Recessive 2x2 table:
Risk AB = Risk AA



Generic Test for 2x2 Table

6

Low 
Risk

High 
Risk

Total

Cases rL rH r

Controls sL sH s=r

Note: this formula is not exactly 
right for additive case, but close



Robust Genetic Tests
• If inheritance mode known, could choose 

powerful Z test, ZD (dominant mode), ZA
(Additive mode), ZR (recessive mode)

• Inheritance mode typically not known –
use robust procedure
– Compute all three test statistics
– select inheritance mode, I, by most extreme 

test statistic among ZD, ZA, and ZR

• What are statistical properties of selected 
extreme statistic?

7



Robust Genetic Tests

• ZI is most extreme test statistic

• I varies in repeated sampling, is random

8



Properties of ZI

• Though ZD, ZA, and ZR are normally 
distributed, ZI is not under H0 or HA

• Computing appropriate p-values for ZI
under H0 is non-trivial (Zheng 2009)

• By selecting most extreme statistic, 
underlying observed effect size is likely 
biased

9



Two potential sources of bias
• Ranking bias – bias arising from selecting 

most extreme/highest ranked statistic – aka 
“Winner’s curse”

• Significance bias – bias arising from 
conditioning on finding a significant p-value 
(a.k.a. publication bias)

• Both potentially present in genetic studies –
little treatment of ranking bias

10



Simulated data showing ranking 
and significance bias

• r = s = 500
• Simulate case & control cohorts with 

different true inheritance and effect sizes
• Examine ranking bias alone

• Examine combined ranking and significance 
bias

11
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Demonstration of Standardized Log Odds Bias
10,000 Simulations, Sample size = 500, Minor Allele Frequency = 40%, Disease Prevalence = 10%, alpha = 0.05

Empirical
Power OR

True
Model

Prob.
Dom. is
Chosen

Dom. 
Bias
When
Chosen

Prob.
Add. is
Chosen

Add. Bias
When
Chosen

Prob.
Rec. is
Chosen

Rec. Bias
When
Chosen

Empirical
Bias

Ranking Bias NA 1.8 Dominant 78% 0.02 22% 0.62 < 1% -1.52 0.153
Combined Ranking
and Significance Bias 98% 1.8 Dominant 78% 0.07 22% 0.66 0% NA 0.200

Ranking Bias NA 1.8 Additive 15% 0.22 71% 0.24 14% 0.51 0.274
Combined Ranking
and Significance Bias 87% 1.8 Additive 13% 0.58 74% 0.42 13% 0.86 0.496

Ranking Bias NA 1.8 Recessive < 1% -1.28 12% 0.66 88% 0.07 0.137
Combined Ranking
and Significance Bias 93% 1.8 Recessive < 1% 1.21 12% 0.86 88% 0.20 0.280

Ranking Bias NA 1.4 Dominant 68% 0.13 27% 0.52 4% -0.42 0.211
Combined Ranking
and Significance Bias 63% 1.4 Dominant 70% 0.68 29% 1.03 1% 1.46 0.790

Ranking Bias NA 1.4 Additive 28% 0.25 46% 0.47 26% 0.34 0.373
Combined Ranking
and Significance Bias 42% 1.4 Additive 23% 1.30 57% 1.15 20% 1.48 1.252

Ranking Bias NA 1.4 Recessive 8% -0.60 21% 0.63 71% 0.23 0.246
Combined Ranking
and Significance Bias 44% 1.4 Recessive 1% 1.37 22% 1.39 77% 0.99 1.080

1) Bias exists        2) Ranking Bias ≠ Significance Bias
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• Not if solely interested in significance and p-
value correctly computed

• When does magnitude matter?
- Basis for power analysis for follow-up study

• Overestimation of effect size => underpowered 
study 

– May not have opportunity for follow-up study to 
definitively establish effect size

– Comparisons across studies/ Replication of previous 
study

– Confidence intervals
• Overestimate shifts entire interval

– Do results have influence on whether further 
investigation warranted 

• e.g. pilot study results must exceed some threshold 
before proceeding

Does bias matter ?



Method of moments approach

14



Method of moments

15

Formula reflects the idea that bias arises from a mixture 
distribution of mode specific bias weighted by the probability that 
that a given inheritance mode generates the most extreme 
statistic.
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Method of moments



Compute the bias correction as 

17

Method of moments



Incorporating significance bias
• To take into account significance bias, 

adjust the conditioning event to require 
p-value sufficiently small, e.g.

• Use Monte Carlo techniques to evaluate 
these expectations and probabilities

18
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Method of Moments and Nonparametric Bootstrap Correction

Empirical
Power OR

True
Model

Empirical
Bias

Mean Meth. 
Of Moments
Correction

Mean 
Nonparam. 
Bootstrap 
Correction

Ranking Bias NA 1.8 Dominant 0.153 0.138
Combined Ranking
and Significance Bias 98% 1.8 Dominant 0.200 0.245 0.230

Ranking Bias NA 1.8 Additive 0.274 0.249
Combined Ranking
and Significance Bias 87% 1.8 Additive 0.496 0.436 0.434

Ranking Bias NA 1.8 Recessive 0.137 0.145
Combined Ranking
and Significance Bias 93% 1.8 Recessive 0.280 0.310 0.300

Ranking Bias NA 1.4 Dominant 0.211 0.182
Combined Ranking
and Significance Bias 63% 1.4 Dominant 0.790 0.477 0.476

Ranking Bias NA 1.4 Additive 0.373 0.246
Combined Ranking
and Significance Bias 42% 1.4 Additive 1.252 0.606 0.607

Ranking Bias NA 1.4 Recessive 0.246 0.184
Combined Ranking
and Significance Bias 44% 1.4 Recessive 1.080 0.538 0.527



Conditional Likelihood Approach

• Present only to address ranking bias, not 
combined with significance bias

• Idea used in other contexts –
– significance bias for single marker/SNP --

Prentice (2008), Ghosh (2008) 
– estimating parameters conditional on 

stopping clinical trial after interim analysis 
Liu, Troendle et al. (2004)

20



Conditional Likelihood

21



Conditional Likelihood

22
f( ) denotes multivariate normal density



Conditional Likelihood
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Conditional Likelihood

24



Simplified CML Estimation

• Consider only choosing between 
dominant and recessive, i.e. Z = (ZD,ZR)

• Take as known disease prevalence in 
population, minor allele frequency in 
population, and assume Hardy-Weinberg 
equilibrium

• Then only 2 dimensional search needed, 
integration is simpler

• Compare unconditional and conditional 
maximum likelihood estimates 25



MLE and CMLE comparison

26

3 simulated datasets with parameters r = 500, 
MAF = 40%, prevalence=10%, true mode of 
inheritance = additive, True OR=1.8

Little
Difference

Moderate
Difference

Unreasonable
Difference

(ZD, ZR)



Unusual estimates from CMLE

• Noted by Ghosh in context of significance 
bias in genetic markers (univariate)

• Overcorrection arises in very simple 
circumstances

• See how g(x;θ,1) changes with observed x
27
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When x=3 
CMLE for θ = 2.48
Reasonable Estimate

When x=2.3 
CMLE for θ = - 0.78
Unreasonable Estimate



Conclusions

• Simple case of ranking bias – easy to 
generalize to situations whenever look at 
extreme results among multiple tests
– Genome-wide association – 1 million tests

• Bootstrap and Method of moments okay 
but not great

• Conditional likelihood unsatisfying
• Bayesian?

29
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Prevalent Sampling Bias

Cancer screening studies: patients who are screening
diagnosed (with a longer preclinical duration) often have more
favorable disease prognosis

Labor economy: subjects who have longer unemployment
durations are more likely to be sampled into the studies

Prevalent cohort studies: Individuals diagnosed with a disease
(e.g dementia or HIV positive) are followed for the failure
event (death)

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Canadian Study of Health and Aging

Dementia is a progressive degenerative medical condition

The CSHA study was a multicenter epidemiologic study

14,000 + subjects ≥ 65 years randomly chosen to receive an
invitation for a health survey throughout Canada

10263 subjects agreed to participate ⇒ screening for
dementia in 1991

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Prevalent Cohort

1132 people were identified as having the disease

Dates of disease onset were retrieved from medical records

Confirmed cases followed prospectively for death/censoring
until 1996

Patients with worse prognosis of dementia were more likely to
die before the study recruitment

A V

C
T = A + V

Onset Examination DeathDropout

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Length-biased Data

Individuals have experienced the initial event but have not
experienced the failure event at the time of recruitment

Individuals diagnosed with the disease have to survive to the
examination or sampling time (subject to left truncation)

The “observed” time intervals from initiation to failure within
the prevalent cohort tend to be longer than those arising from
the underlying distribution of the general population

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Biased and unbiased distributions

The observed failure time data (T1, · · · ,Tn) are a biased subset
for population sample T̃

f : the unbiased pdf for T̃

g : the length-biased density for T

Under the stationarity assumption, given covariates, Z = z ,

g(t|z) =
tf (t|z)∫∞

0 uf (u|z)du
:=

tf (t|z)

µ(z)
, (1)

where µ(z) =
∫∞
0 uf (u|z)du

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Objective and Complications

Objective: estimate covariate effect on unbiased failure time T̃
under the proportional hazards model

λ(t|Z ) = λ0(t) exp(ZTβ)

Challenges:

PH model structure assumed for T̃ will not hold for the
observed biased T

Informative censoring due to left-truncation mechanism

Naive approaches ignoring length-biased sampling ⇒ biased
estimation

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Literature on Length-Biased Data

Nonparametric approaches

Turnbull (1976), Lagakos, S. W., Barraj, L. M. and De Gruttola, V.
(1988), Wang (1991)

Vardi (1982, 1985), Gill, R. D., Vardi, Y. and Wellner, J. A. (1988),

Asgharian, M., M’lan, C. M. and Wolfson, D. B. (2002), Asgharian,

M. and Wolfson, D. B. (2005) among others

Semiparametric Cox model to assess risk factors on
length-biased data:

Wang (1996) constructed a pseudo-likelihood method for
length-biased data without right censoring

Kalbfleisch and Lawless (1991), Keiding (1992), Wang, Brookmeyer

and Jewell (1993) for left-truncated data

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Notation

Yi = min(Ti ,Ai + Ci ), Ti = Ai + Vi

δi = I (Vi ≤ Ci )

Zi is a vector of covariates

Assume that the censoring time measured from the recruitment
time, C , and (A,V ) are independent given covariate Z .

A V

C
T = A + V

Onset Examination DeathDropout

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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With Right-censoring

When the observed failure time T from length-biased sampling is
subject to potential right censoring,

the censoring variable can be dependent on the failure time,
because

Cov(T ,A+C ) = Cov(A+V ,A+C ) = Var(A)+Cov(A,V ) > 0

A V

C
T = A + V

Onset Examination DeathDropout

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Model and Method

Under the stationarity assumption, the joint distribution of (A,V )
and (A,T ) given Z = z follows (Zelen, 2004, Vardi, 1989)

fA,T (a, t|z) = fA,V (a, v |z) = f (a + v |z)I (a > 0, v > 0)/µ(z)

Since C is assumed to be independent of (A,V )

Pr(A = a,T = t,C ≥ t − a|z)

= fA,V (a, t − a|z)Pr(C ≥ t − a)

= f (t|z)SC (t − a)/µ(z),

where SC (t) is the survival function for C .

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Estimating Equation I (EE-I)

Assume that C is independent of Z ,

U1(β) =
n∑

i=1

δi

[
Zi −

∑n
j=1 Zj exp(βT Zj)I (Yj ≥ Yi )δj{YjSC (Yj − Aj)}−1∑n

j=1 exp(βT Zj)I (Yj ≥ Yi )δj{YjSC (Yj − Aj)}−1

]

For unknown SC , we can use its consistent Kaplan-Meier
estimator, ŜC (t) for C

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Estimating Equation II (EE-II)

With the observed data, we construct the unbiased estimating
equation

U2(β) =
n∑

i=1

δi

[
Zi −

∑n
j=1 I (Yj ≥ Yi )δj{wc(Yj)}−1Zj exp(βT Zj)∑n
j=1 I (Yj ≥ Yi )δj{wc(Yj)}−1 exp(βT Zj)

]

By replacing wc(y) =
∫ y
0 SC (t)dt with its consistent estimator

ŵc(t) =
∫ t
0 Ŝ(u)du, we have an asymptotic unbiased estimating

equation, EE-II

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Asymptotic Properties

Under mild regularity conditions

the estimating equations U1(β) and U2(β) have,
asymptotically, a consistent and unique solution β̂1 and β̂2,
respectively

√
n(β̂1 − β0)⇒ N(0,Σ1),

√
n(β̂2 − β0)⇒ N(0,Σ2),

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Simulation Set-up

The underlying population distribution of T̃ follows a proportional
hazards model

with two independent covariates: Z1 ∼ Bernoullli distribution
and Z2 ∼ a uniform variable on (-0.5,0.5)

censoring percentages: 20, 35 and 50

n=200 and repeated for 1000 times

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Table 1. Proportional hazards model

EE-I EE-II

β0 Cen % β̂1 95% CP β̂2 95% CP

(1,1) 20% 0.991 0.972 .974 .959 1.020 1.016 .985 .970
35% 0.936 0.920 .930 .912 1.024 1.026 .974 .958
50% 0.838 0.813 .841 .866 1.019 1.003 .953 .944

(2,2) 20% 1.989 1.951 .968 .961 2.013 2.001 .972 .971
35% 1.961 1.839 .963 .920 2.042 2.018 .971 .962
50% 1.833 1.674 .894 .837 2.016 1.992 .962 .955

Instability of EE-I due to ŜC (t)→ 0 in the denominator

EE-II is more robust with
R t
0 ŜC (u)du in the denominator

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Canadian Study of Health and Aging

Excluding subjects with missing data on A and Z , a total of 818
patients remained

date of onset, date of screening for dementia, date of death or
censoring and death indicator variable

three types dementia diagnosis: probable Alzheimer’s disease
(393), possible Alzheimer’s disease (252) and vascular
dementia (173)

638 out of 818 patients died at end of this study

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Example Results

Table 2. Estimates (se) of regression coefficients for dementia data

Length-bias adjusted Cox model Naive Cox model
EE-I EE-II

Vascular dementia 0.137 (.101) 0.074 (.101) 0.076 (.103)
Possible Alzheimer -0.109 (.093) -0.134 (.091) -0.182 (.093)

probable Alzheimer’s disease as the baseline

The diagnosis of three subtypes of dementia had little difference in
long-term survival, which was consistent with the nonparametric
survival estimators provided in Wolfson et al (2001).

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Computation Algorithms

Estimating covariate effects for traditional right-censored
failure time data is easy for the end user with existing software

Illustrate how to use coxph in S-PLUS/R for traditional
right-censored data to analyze length-biased right-censored
data under Cox model

Slightly modified commands in S-PLUS/R for estimating β
from EE-I and EE-II

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Computation Algorithms

For length-biased data, use the function coxph, with the offset
option

define ZZZV and ZZZP as indicators of Vascular dementia and
possible Alzheimer’s disease

EE-I: ŴWW 1 is the Kaplan-Meier estimator of C on all Yi − Ai

and i = 1, · · · ,m,

Ŵ1i = {Yi ŜC (Yi − Ai )}−1.

EE-II: ŴWW 2 is the integral of the Kaplan-Meier estimator of C

Ŵ2i = {ŵc(Yi )}−1 = {
∫ Yi

0
ŜC (u)du}−1

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Computation Algorithms

Apply
> coxph(Surv(ftime,rep(1,m)) ˜ ZZZV + ZZZP +

offset(log(ŴWW k))), data=fdata),

where k = 1 or 2, “ftime” is the observed failure times, m is the
total number of the observed failure times, “fdata” is the subset of
the whole data matrix among subjects with observed failure times
only

offset term is used to include (log(ŴWW k))) in the model as a fixed
covariate with coefficient 1 in the model

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Equivalence

Recall EE-I, U1(β) can be expressed as

n∑
i=1

δi

[
Zi −

∑n
j=1 I (Yj ≥ Yi )δjZj exp(βT Zj)Ŵ1j∑n
j=1 I (Yj ≥ Yi )δj exp(βT Zj)Ŵ1j

]
= 0

n∑
i=1

δi

[
Zi −

∑n
j=1 I (Yj ≥ Yi )δjZj exp{βT Zj+ log(Ŵ1j)}∑n
j=1 I (Yj ≥ Yi )δj exp{βTZZZ j+ log(Ŵ1j)}

]
= 0

which is the same as the score equation used in the traditional Cox
model with a linear predictor log(WWW 1) restricting among the
observed failure times.

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Discussion

Propose an inference method to evaluate covariate effects on
unbiased data when the observed data are subject to
length-biased sampling

The semiparametric Cox model structure imposed on the
population sample ⇒ straightforward interpretation of the
regression coefficients

The PH model assumption is not invariant for population data
and length-biased data in general

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Discussion

ŜC (t), as an inverse weight in EE-I ⇒ instability of the
estimating equation at the tail

ŵc(t) =
∫ t
0 ŜC (u)du in EE-II is the area under the survival

curve ⇒ robust

Computational advantages: use modified standard software
for traditional right-censored data in

S-PLUS/R: coxph with “offset” option
SAS: PROC PHREG with “OFFSET” option

The consistent variance estimators of β̂1 and β̂2 can be
obtained from the estimating equations or bootstrap method

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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additional equations

h(z|T = t) =
g(t|zzz)h(zzz)R
g(t|zzz)h(zzz)dzzz

=
tf (t|zzz)h(Z)/µ(Z)R
tf (t|Z)h(Z)/µ(Z)dZ

.

Under the proportional hazards model, the conditional expectation of Z is

E [Z |T = t] =

R
ztf (t|z)h(z)/µ(z)dzR
tf (t|z)h(z)/µ(z)dz

=

R
z exp(βββT z)Sf (t|z)h(z)/µ(z)dzR
exp(βββT z)Sf (t|z)h(z)/µ(z)dz

=
E [Z exp(βββT Z)Sf (t|Z)/µ(Z)]

E [exp(βββT Z)Sf (t|Z)/µ(Z)]

E [Z |y , δ = 1, a] =

R
zf (y |z)SC (y − a)h(z)/µ(z)dzR
f (y |z)SC (y − a)h(z)/µ(z)dz

=
E [Z exp(βββT Z)SU(y |Z)/µ(Z)]

E [exp(βββT Z)SU(y |Z)/µ(Z)]
.
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Estimating Equation I

The above joint distribution for (Y ,A,C ) leads to the following
conditional expectation

E
[
δI (Y ≥ y){YSC (Y − A)}−1

∣∣∣Z]
=

∫ ∞
y

f (t|Z )

∫ t

0
SC (t − a)t−1S−1

C (t − a)dadt/µ(Z )

=

∫ ∞
y

f (t|Z )/µ(Z )dt = Sf (y |Z )/µ(Z ) (2)

E [Z |Y = y , δ = 1,A = a] =
E [Z exp(βT Z )Sf (y |Z )/µ(Z )]

E [exp(βT Z )Sf (y |Z )/µ(Z )]

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Recall

Pr(Y = y ,A = a,C ≥ y − a|z) = f (y |z)SC (y − a)/µ(z),

then the probability of observing the length-biased failure time at y

Pr(Y = y , δ = 1|z) =
f (y |z)wc(y)

µ(z)
, (3)

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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Estimating Equation II

Based on (3), we have

E [I (Y > y , δ = 1){wc(Y )}−1|Z ]

=

∫ ∞
y

f (t|Z )dt

∫ t

0
SC (v)dv{wc(t)}−1/µ(Z )

=

∫ ∞
y

f (t|Z )dt/µ(Z ) = Sf (y |Z )/µ(Z )

where wc(y) =
∫ y
0 SC (t)dt.

Jing Qin Biostatistics Research Branch, NIAID A Semiparametric Model for Length-biased Data
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I. Nonparametric Behrens-Fisher Problem

Two sample problem with no distributional assumptions

X ∼ F Y ∼ G

p = P{ X > Y } + 1/2 P{ X = Y }

H0 : p = 1/2
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I. Nonparametric Behrens-Fisher Problem (Cont)

• p is called the relative treatment effect

• Studied by many, especially Brunner & Munzel (2000)

p =

∫
F dG, where F and G are the normalized df

p̂ =

∫
F̂ dĜ

• Note however that p is not transitive, i.e.

F > G > H > F is possible
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I. Nonparametric Behrens-Fisher Problem (Cont)

• Brunner & Munzel use p̂ to estimate p, and derive tests

of H0 from the asymptotic normality of
√

N(p̂− 1/2)

• This generalized Wilcoxon test (GW) works pretty well,
but can one obtain an LRT for this problem?
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II. A Semiparametric Solution

• Fokianos, Kedem, Qin, & Short (FKQS)(2001) solved

a similar problem using Empirical Likelihood, by assum-
ing

f(x) = exp(α + βh(x))g(x)

• FKQS test HI : F = G, not H0 : p = 1/2
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III. Empirical Likelihood

L =

n1∏
i=1

[F (Xi)− F (Xi−)]

n2∏
j=1

[G(Yi)−G(Yi−)]

• Maximization of L yields nonparametric MLE’s of F
and G
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III. Empirical Likelihood (Cont)

• FKQS ⇒ consider step cdf’s with jumps at the ob-
served values x1, . . . , xn where the size of the jumps are
the unknown parameters. The problem becomes a con-
strained maximization problem with many parameters.

• For the two sample problem we get:

L =
n∑

i=1

log pmi
i +

n∑
j=1

log q
m′

j

j
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IV. Empirical Likelihood Ratio Test for NBFH

To get ELRT, we need to solve

max L

subject to
n∑

i=1

pi = 1

n∑
j=1

qj = 1

n∑
j=1

qj

n∑
i=j+1

pi =

n∑
j=1

qj

j−1∑
i=1

pi
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IV. Empirical Likelihood Ratio Test for NBFH (Cont)

Lagrange Multipliers ⇒

mi/pi = λ1

 i−1∑
r=1

qr −
n∑

r=i+1

qr

 + λ2 i = 1, . . . , n

m′
j/qj = λ1

 n∑
s=r+1

ps −
r−1∑
s=1

ps

 + λ3 j = 1, . . . , n

along with the constraint equations.
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IV. Empirical Likelihood Ratio Test for NBFH (Cont)

• One can easily eliminate the q’s. p’s appear intractable.

• Struggle  

pi =
mi

n1 + λ1

[
−1 +

∑i−1
j=1

m′
j

n2+λ1θj
+

∑i
j=1

m′
j

n2+λ1θj

] i = 1, . . . , n.

where

θj =
n∑

i=j+1

pi −
j−1∑
i=1

pi
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IV. Empirical Likelihood Ratio Test for NBFH (Cont)

• Problem of generating candidates for feasible solutions
is reduced to getting numerical solution to roots of single
variable (λ1) equation.

• Numerical solutions to single variable problems work
quite well; in this case feasible solutions are almost al-
ways found.
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V. Approximating the Null Distribution

• Large Sample Approximations may or may not be ok in
practice, but not ok for comparison of power

• F̃ and G̃ constrained EMLE’s for F and G

• Samples from F̃ and G̃ should approximate data under
H0

• In practice this works like a random permutation test,
but with random draws from F̃ and G̃ used to construct
re-sampled datasets
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VI. Simulations

(1) 1st Pop=N(0,1); 2nd Pop=N(µ2, σ2
2)

(2) 1st Pop=N(0,1); 2nd Pop=U(Mean=µ2, Var=σ2
2)

(3) 1st Pop=Poi(Mean=2); 2nd Pop=Poi(Mean=µ2)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Kedem Symposium, July 30, 2009 14

Table 1: Power of the NBFH tests for null configurations.∗

Null Distribution
Dist. Asympt. Sim. EMLE
Type (µ2, σ2

2) (n1, n2) GW GW ELRT

(1) (0,1) (10,10) .0557 .0472 .0494
(0,2) (10,10) .0543 .0466 .0485
(0,1) (30,30) .0519 .0499 .0501
(0,2) (30,30) .0515 .0499 .0501
(0,1) (30,20) .0533 .0496 .0497
(0,2) (30,20) .0527 .0510 .0508
(0,.5) (30,20) .0519 .0498 .0502

(2) (0,1) (10,10) .0540 .0459 .0482
(0,2) (10,10) .0534 .0468 .0487
(0,1) (30,30) .0521 .0502 .0503
(0,2) (30,30) .0514 .0507 .0508
(0,1) (30,20) .0528 .0499 .0499
(0,2) (30,20) .0532 .0510 .0511
(0,.5) (30,20) .0517 .0499 .0501

(3) (2,2) (10,10) .0576 .0469 .0484
(2,2) (30,30) .0524 .0503 .0503
(2,2) (30,20) .0532 .0495 .0496

∗Estimated from 100000 replications, giving SE≈ .0007.
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Table 2: Power of the NBFH tests for nonnull configurations.∗

Null Distribution
Dist. Sim. EMLE
Type (µ2, σ2

2) (n1, n2) GW ELRT

(1) (1.5,1) (10,10) .1642 .1701
(1.5,2) (10,10) .0907 .0934
(1.5,1) (30,30) .4494 .4508
(1.5,2) (30,30) .1998 .2007
(1.5,1) (30,20) .3685 .3700
(1.5,2) (30,20) .1542 .1542

(2) (1.5,1) (10,10) .1528 .1595
(1.5,2) (10,10) .0734 .0758
(1.5,1) (30,30) .4087 .4106
(1.5,2) (30,30) .1425 .1435
(1.5,1) (30,20) .3279 .3307
(1.5,2) (30,20) .1138 .1141

(3) (3,3) (10,10) .2384 .2446
(3,3) (30,30) .6383 .6398
(3,3) (30,20) .5312 .5339

∗Estimated from 100000 replications. Bold values significantly higher by Fisher’s exact test at 5%.
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VII. Owen’s Solution

• Owen (2001) is the classic reference for Empirical Like-
lihood.

• Section 11.4 gives a Multi-sample ELT with solution
expressed via Taylor’s series expansion.

• Problem: Truncating the series leaves a “solution”
that is in general not feasible.
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VIII. Density Ratio Model

• Assume the density ratio model:

f(x) = exp(α + βh(x))g(x)

• Given h, the EMLE’s for F and G can be found in
a straightforward manner using profiling, as in Qin and
Zhang (1997) and FKQS.

• However, h is unknown. Estimate h from this Box-Cox
family:

h(x, λ) =

{
(x−xmin)λ−1

λ
when λ 6= 0

log(x− xmin) when λ = 0
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VIII. Density Ratio Model (Cont)

• Estimation of relative treatment effect, p, via

p̂ =

∫
F̂ dĜ

• Fokianos and Troendle (2007) show that for known h,

√
n(p̂− p) → N (0, σ2

dr)

as n1, n2 →∞ such that n1/n2 → ρ
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IX. Tests of the NBFH

• Test H0 : p = 1/2, by using

Tdr =

√
n(p̂− 1/2)

σ̂dr

• One dimensional h(x, λ) estimates
λ ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

• Two dimensional h(x, λ1, λ2) estimates
λ1 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} and
λ2 ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}
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X. Distribution under H0

• Because of the uncertainty in the estimate of λ, we
can’t use the asymptotic distribution of p̂

• Sampling from F̃ and G̃, the constrained EMLE’s for
F and G under the nonparametric model, is used to
approximate the distribution of Tdr under H0
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Table 3: Power of the NBFH tests for non-null configurations.∗

Null Distribution
Simulated EMLE

(n1, n2) F G GWT ELRT SEM1 SEM2

(20,20) N(0,1) N(0.95,1) .8044 .8050 .7924 .8068
N(0,1) N(1.15,2) .7878 .7890 .7500 .7908
N(0,1) U(0.95,1) .7668 .7686 .7894 .7904
N(0,1) U(1.25,2) .7740 .7754 .8066 .7960
U(0,1) U(1.25,2) .7946 .7972 .8184 .8086
G(1,1) G(2,2) .8042 .8052 .7806 .8050

BIN(10,0.8) BIN(50,0.2) .6960 .6970 .6446 .7164

(20,30) N(0,1) N(0.95,1) .8690 .8698 .8596 .8756
N(0,1) N(1.15,2) .8822 .8836 .8570 .8854
N(0,1) U(0.95,1) .8458 .8484 .8640 .8664
N(0,1) U(1.25,2) .8820 .8838 .8970 .8906
U(0,1) U(1.25,2) .8912 .8934 .9034 .8992
G(1,1) G(2,2) .8524 .8526 .8338 .8562

BIN(10,0.8) BIN(50,0.2) .8482 .8484 .8120 .8602

(30,20) N(0,1) N(0.95,1) .8680 .8694 .8604 .8714
N(0,1) N(1.15,2) .8272 .8280 .7906 .8342
N(0,1) U(0.95,1) .8366 .8396 .8646 .8628
N(0,1) U(1.25,2) .8110 .8160 .8508 .8476
U(0,1) U(1.25,2) .8368 .8408 .8672 .8610
G(1,1) G(2,2) .8746 .8760 .8562 .8790

BIN(10,0.8) BIN(50,0.2) .7152 .7202 .6854 .7504

∗Estimated from 5000 replications. Bold values within 2 SE of highest power.
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XI. Conclusions

• Empirical Likelihood quite useful in two-sample prob-
lem

• EL yields doubly robust tests of NBFH

• Struggle  Success
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