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Abstract

Eye-gaze in response to arm movment stimuli is modeled. It is demonstrated that the eye-
gaze response depends to a large degree on both instantaneous and past arm components
movement as well as on past “long memory” of eye-gaze on a scale of about 0.1 second. The
suggested class of models provide close fits. A long memory property in eye-gaze is validated
from a certain spectral condition.



1 Introduction

To reorient eye-gaze, human scene perception undergoes rapid eye movements, called sac-
cades, occurring at the rate of about three times per second. Given dynamic stimuli, such as
arm movement, this translates into one-dimensional x- and y-coordinate eye-gaze time series
characterized by rapid oscillation fraught with sudden discontinuities, and distinguished by
a spectrum heavily supported at frequency zero. The later property induces “long memory”
in time, the central issue of this paper. Figure 1 depicts a typical x-coordinate eye-gaze time
series response and corresponding input from arm components.
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Figure 1: A time series from subject 5, movement 9, x-coordinate, under “Watch”, and arm
inputs sampled at 120Hz.

It is intuitively clear that in order to predict the future it is necessary incorporate past
information. The question is then how far into the past do we to go to obtain meaning-
ful prediction. This question is considered here in terms of eye-gaze and arm movement
relationship. More precisely, the goal of this paper is to quantify the memory induced by
eye-gaze stimulated by arm movement, and to describe the influence of certain past and
present covariates on eye-gaze as a function of time. This is done by fitting to the x-, y-,
and

√

x2 + y2=r-coordinates time series linear prediction models containing past eye-gaze
as well as past and instntaneous inputs from arm components movement. The statistical
analysis, illustrated by a few typical cases, reveals a remarkable regularity and consistency
of eye-gaze/arm-movement relationship across seven subjects and ten arm-movements under
two conditions. The analysis points to: a. Remarkably close fits with well behaved residuals
of models where the eye-gaze response depends on arm inputs as well as on past response.
b. The fact that past memory on the order of about 0.1 second is important for prediction,
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but that the immediate past on the order of 16-20 milliseconds (roughly) is crucial. c. The
existence of long memory traits as defined by spectral considerations.

1.1 Some Preliminaries

A time series or process is a collection of data points yt, t = 1, 2, ..., n measured at successive
time points. Due to natural ordering in time, adjacent data points in a time series tend
to be correlated. Hence, the notion of autoregression where the present value at time yt

depends on past values at previous time points yt−1, yt−2, .... is natural. In many cases, in
addition to past values, a time series may depnd on other series as well. By a stationary

time series or process we shall mean a series for which the correlation between two values yt1

and yt2
depends on the distance between them |t2 − t1|. A well known model useful for short

memory stationary processes is the autoregressive moving average model (ARMA). The so
called autoregressive fractionally integrated moving average model (ARFIMA) is useful for
a certain class of long memory processes [1], [15]. A precise definition of “long memory” is
given below.

In general, the dependence structure of a stationary time series is described by the auto-

covariance or by the autocorrelation function which measure the covariance and correlation
between pairs of observations, respectively. The autocovariance function γ is a function of
the time lag h,

γ(h) = Cov(yt, yt+h)

and the autocorrelation is given by the normalized quantity γ(h)/γ(0). When it exists, the
Fourier transform of the sequence γ(h) is a function of frequency referred to as the spectral

density and denoted by f(λ). The spectral density describes the power or variance in a signal
as a function of frequency, and a process for which the power is distributed evenly across all
frequencies (flat spectrum) is referred to as white noie. An important example of white noise
is a sequence of uncorrelated observations with mean zero and fixed variance. The quality
of a regression model is judged by the closeness of its residuals to white noise.

The sample analog of the autocovariance is the sample autocovariance,

γ̂(h) =
1

n

∑

t

(yt − ȳ)(yt−h − ȳ).

To test for whiteness, one checks whether the sample autocorrelation γ̂(h)/γ̂(0), h = 1, 2...
is sufficiently small. As an example, the sample autocorrelation shown at the top of Figure
6 points to a series which is far from white noise, whereas the bottom part shows a sample
autocorrelation typical of white noise. Another useful sample quantity is the periodogram

defined as

I(λ) =
1

n
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Summing the periodogram over frequency gives the cumulative periodogram (cpgram), an
important diagnostic tool. A typical cumulative periodogram from white noise is close to a
45-degree line, an example of which is shown in Figure 7 on the right. Marked deviations
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from the 45-degree line, as in Figure 7 on the left, point to series far removed from white
noise.

Long memory time series refer to processes where observations far away from each other
are strongly correlated. In the case of ARMA processes, the covariance between Yt and Yt+k

decays exponentially fast as k → ∞, and is absolutely summable under general conditions.
For this reason ARMA processes are referred to as short memory processes. A process for
which

∞
∑

h=−∞

|γ(h)| = ∞

is said to be a long memory process [15]. There are other definitions of long memory processes
of which we shall adopt a somewhat narrower definition in the spectral domain. Accordingly,
a long memory process is a stationary process for which the spectral density function f(λ)
satisfies the condition

lim
λ→0

f(λ)

c |λ|−2d
= 1 (1)

for memory paramater d such thatd ∈ (0, .5) and a positive constant c. Condition (1) implies
that the spectral density has a pole at frequency zero.

Of the various methods available for the estimation of the memory parameter d we shall
adopt Whittle’s estimation method [18]. Details of this estimation procedure can be found
in [7], [5], [8].

The study of long memory characteristics in time series has long been under investigation
in various fields including hydrology, economics and biology. Many examples of real-life time
series which possess this long memory behavior can be found in [2], [3], [17]. In relation to
the present work, experiments show that the human sensorimotor coordination system falls
into the framework of long memory processes [4].

1.2 Data Description

Employing an eye-gaze tracker, eye-gaze data were recorded for 7 individuals, referred to as
subjects, in response to 10 distinct simple one-arm movements of a demonstrator [14]. The
eye-gaze was recorded under two conditions. Under the first condition the subjects were
instructed to watch the movements and answer a few questions regarding the movements.
Under the second condition the subjects were asked to watch and then imitate the arm
movements as closely as possible. The first condition is referred to as “Watch” and the second
as “Imitate”. The x-y coordinates of the wrist, elbow, and shoulder of the demonstrator,
and those of the eye-gaze of the subjects were recorded giving 7 × 10 × 2 = 140 data sets.
The eye-gaze data analyzed here consist of x-coordinate time series sampled at 120Hz and
ranging in length from 801 (6.68s) to 1609 (13.41s) data points. The arm data were taken
from a video recorded at 15Hz. More details of the experimental apparatus, procedure and
data analysis used to derive the eye-gaze coordinates can be obtained from the work of Noy
[14].
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2 Data Analysis

Since the arm movement serves as an input to eye-gaze output, it is clear that eye-gaze and
arm movement must be related. To explore this relationship, we start with a simple model.

We model the x-coordinate of eye-gaze time series denoted, by yt, where the first 50 time
points were truncated to eliminate transient effects at the beginning of each signal. For
this purpose, consider first a simple model referred to as model M0, depending only on the
x-coordinates of wrist ( wt), elbow (et), and shoulder (sht) as regressors or covariates,

(M0) yt = β0 + β1wt + β2et + β3sht + ǫt. (2)

where ǫt is noise or an error term. Following [10], the coefficient were estimated using least
squares fitting. Across the two conditions, 10 movements, and 7 subjects, it was observed
that the wrist component coefficient β1 was significant at 5% level for almost all cases (with
exception of three cases). For coefficients β2 and β3, there were more than three cases where
the coefficients were insignificant at 5% level. Let us consider a representative case, say
Subject 4 movement 1 under the “Watch” condition. We performed the least squares fit
and obtained goodness-of-fit statistics and residuals. Figure 2 shows the least squares fit of
the model. The sample autocorrelation function of the residuals resulting from the linear
regression fit is shown in Figure 3. The autocorrelation plot clearly shows a slow decay,
pointing to significant values even at lag greater than 30. In addition, and this is at the core
of the present work, the spectral density computed for the residuals shows a markedly large
peak around zero frequency in Figure 4, indicating the possibility of long memory behavior
in this time series. This behavior was observed in all cases. To validate the presence of long
memory in the sense of (1) in the residual series, the fractional parameter d was estimated
using Whittle’s method [8]. The estimated d averaged for each subject across 10 movements
for both conditions are reported in Table 1. All but one average d value was found to be
in the interval (0, 0.48), pointing to substantial long memory. These results imply that a
significant long memory structure has not been taken into account in model M0 in (2). This
suggests adding regressors pertaining to past response to improve the fit. As we shall see
next, augmenting model M0 with past eye-gaze response improves the fit greatly.

To account for the long memory residuals in model M0 in (2), we appeal to the repre-
sentation of a long memory process by an infinite autoregressive (AR) expansion [15], [9].
Since the length of each eye-gaze time series is finite, we fitted an AR(p̃) with a finite order
p̃ to the estimated regression residual process ǫ̂t. The new residuals obtained by fitting a
long AR (p̃) did not show any long range dependence. That is, the autocorrelation plot, the
cumulative periodogram plot along with Portmanteau tests confirmed the whiteness of these
residuals for all cases.

This analysis suggests models where the instantaneous eye-gaze depends on past eye-gaze
as well as on present and past movement of arm components. In the next section we provide
several examples of such models and their quality of fit.

3 Prediction Models for Eye-gaze

In light of the previous discussion, we explore eye-gaze/movement relationship by including
appropriate past and present covariates, to obtain fine-tuned models which trace the gaze
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Figure 2: True and fitted values for Subject 4, Movement 1, “Watch” condition.

Figure 3: Autocorrelation from M0 residuals. Subject 4, Movement 1, “Watch” condition.
The dashed lines show the 95% confidence limits based on white noise.

data in detail. We have examined numerous cases all of which behave quite similarly, across
subjects, movements, and conditions, and thus it suffices to illustrate our findings by a few
typical cases of x-coordinate, y-coordinate, and and r-coordinate (r =

√

x2 + y2) series.
These cases are:

Subject 5, Watch, Movement 9, x-coordinate (S5W9x),
Subject 3, Watch, Movement 8, x-coordinate (S3W8x),
Subject 3, Watch, Movement 6, y-coordinate (S3W6y),
Subject 2, Watch, Movement 4, r-coordinate (S2W4r),
Subject 4, Imitate, Movement 7, r-coordinate (S4I7x).

Regardless of coordinate, the gaze, wrist, elbow, and shoulder time series are denoted by yt,
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Figure 4: Estimated spectral density from the M0 residuals. Subject 4, Movement 1, “Watch”
condition.

Table 1: Average d estimates from residuals of M0 using Whittle’s method with standard
deviations shown in parenthesis.

Subject Watch Imitate
1 0.29 0.28

(0.05) (0.09)
2 0.34 0.36

(0.16) (0.08)
3 0.32 0.35

(0.11) (0.10)
4 0.26 0.31

(0.10) (0.07)
5 0.47 0.46

(0.08) (0.09)
6 0.17 0.29

(0.09) (0.10)
7 0.44 0.56

(0.09) (0.13)

wt, et, and st, respectively. We have used the AIC criterion to select the optimal models out
of numerous competitors [10]. The optimal model minimizes the AIC.

3.1 Special Case of S5W9x

Using the AIC criterion, the best model has the form:

yt = const + a1yt−1 + · · ·+ a4yt−4 + a6yt−6 + a7yt−7 + b0wt + b1wt−1 + · · ·+ b4wt−4

+ c1et−1 + c2et−2 + d0st + d1st−1 + d2st−2 + noise. (3)
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The optimal model (3) is referred to as All.step. It points clearly to great dependence of the
present eye-gaze on its past. Observe that yt−5 is not included in (3).

To have the right perspective, it is helpful to compare the optimal model All.step with M0
in (2), the intuitive model which uses only present arm covariates, and with the model which
uses only the past gaze yt−1, yt−2, ...., yt−12, referred to as My1...y12. It is also interesting to
consider a model which depends on the immediate past gaze response yt−1, yt−2 only. Call
this model My1y2.

From Table 2, as compared with M0, the optimal model All.step exhibits a much smaller
AIC, much larger R2, and much smaller residual standard error. This pattern was observed
in all other cases across subjects, movements, and conditions. Model M12 has a substan-
tially larger AIC than All.step, but approximately the same R2 and residual standard error.
Apparently, the inclusion of movement covariates in addition to past gaze covariates brings
about further AIC reduction, and helps in fine-tuning the optimal gaze/movement model.
Conspicuously, model My1y2, which uses the immediate past response of 16 milliseconds
only, accounts for about 97% of the variation in the eye-gaze data. In many cases it is well
above 98% This has been observed time and again in many cases.

Table 2: Comparison between All.step, M0, and M12
Model AIC R2 Resid SE

M0 6929.502 0.5164 2.0800
My1y2 2073.291 0.9763 0.4601
My1...y12 2044.084 0.9770 0.4546
All.step 1912.636 0.9789 0.4358

More dramatic is the improvement in the one step ahead prediction shown in Figure 5.
Evidently M0 gives a much coarser fit compared with that of All.step.

Next, let us examine the residuals. Figure 6 shows the estimated autocorrelation of the
M0 residuals. The autocorrelation points to great stochastic dependence and is completely
out of the horizontal bounds, whereas it is completely between the horizontal bounds as
expected from white noise (WN). There is a great reduction in autocorrelation going from
M0 to All.step, and this was observed throughout.

To reaffirm the whiteness of the All.step residuals, we appeal to the cumulative peri-
odogram (cpgram) in Figure 7. The cpgram of the M0 residuals points to a great emphasis
of low frequencies close to the origin. On the other hand, the cpgram of the All.step residuals
lies perfectly between the two diagonal confidence bands, as is the case for white noise.

Next we examine the distribution of the All.step residuals in Figure 8. Looking at the
figure one is tempted to say that the residuals are normally distributed, but this is not quite
the case as the qq-plot shows in Figure 9. This behavior is more in line with that of a
mixture of normal distributions shown in Figure 15 for another case.

3.2 Special Case of S3W8x

The previous results where gaze at time t is well explained by a rather long autoregressive
component and an additional movement component is typical. Similar findings were observed
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Figure 5: S5W9x: Observed vs fitted values. Top: M0. Bottom: All.step.
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Figure 6: S5W9x. Top: Autocorrelation of the M0 residuals. The autocorelation points to
an inadequate fit. Bottom: Autocorrelation of the All.step residuals. The autocorelation is
within white noise bounds, necessary for an adequate fit.
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Figure 7: S5W9x. Left: cpgram of the M0 residuals. Right: cpgram of the All.step residuals.

Resid Dist of All.step, S5W9x, vs N(0,0.188)
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Figure 8: S5W9x: Histogram of the All.step residuals vs the pdf of N(0,0.188).
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Figure 9: S5W9x: QQ-Norm plot of the All.step residuals.
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in other “Watch-x” cases across subjects and movements. In support of this, it is instructive
to consider yet another special case, that of S3W8X. In addition we illustrate the effect of
removal of certain covariates from an optimal model.

With the same notation as above, the best model which minimizes the AIC is again
referred to as All.step and is given as

yt = const + a1yt−1 + · · ·+ a5yt−5 + a8yt−8 + a9yt−9 + a10yt−10

+ b0wt + b1wt−1 + b3wt−3 + b4wt−4

+ c1et−1 + c2et−2 + noise (4)

Notice that the autoregressive part has a “hole” (yt−6, yt−7 not included), as does the wrist
part (wt−3 not included), and that the shoulder did not enter at all. This pattern has been
observed in many cases. Still, there are cases where the shoulder was included.

It is interesting to see what happens when certain covariates are removed from the optimal
model All.step. That is the effect on the residual cumulative periodogram (cpgram), AIC,
R2, residual standard error (RSE), and the effect on the plot of observed vs fitted values. In
this respect, consider the following models. The model

yt = const + a1yt−1 + · · ·+ a5yt−5 + a8yt−8 + a9yt−9 + a10yt−10

+noise (5)

retains only the autoregressive component of All.step, and is called “AR Only”. Next we
remove from All.step the autoregressive component to come up with model “WE”, consisting
of wrist and elbow components only,

yt = const + b0wt + b1wt−1 + b3wt−3 + b4wt−4 + c1et−1 + c2et−2 + noise (6)

Model AR12.WE adds the autoregressive terms yt−1, yt−2 to model WE,

yt = const + a1yt−1 + a2yt−2

+ b0wt + b1wt−1 + b3wt−3 + b4wt−4

+ c1et−1 + c2et−2 + noise (7)

Model M0 is the same as (2). Evidently, from Table 3, the optimal model requires both a long
memory gaze autoregressive part as well as some arm covariates, where the autoregressive
part plays a more important role.

The following figures illustrate the improvement achieved by adding the autoregressive
gaze component to the arm component. Figures 10 and 11 display the residual autocorre-
lation reduction obtained by going from model WE to model All.step, and Figures 12 and
13 show the corresponding improvement in goodness of fit. Model WE traces the general
smooth version of the gaze data, whereas model All.step traces the data in detail.

Figure 14 shows the great symmetry of the residuals distribution. The distributions of
the residuals from many other Watch-x cases appear equally symmetric. The qq-plot in
Figure 15 suggests that the residual distribution may be approximated by a mixture of two
normal distributions, N(0,0.16) and N(0,2.25), with weights approximated by 0.98 and 0.02,
respectively.
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Table 3: Comparison between All.step and competitors.
Model Resid CPGRAM AIC R2 Resid SE

WE All out 2769.9 0.8989 1.3560
M0 All out 2738.7 0.9020 1.3320
AR Only All in 1207.1 0.9857 0.5106
AR12.WE Most in 1087.1 0.9877 0.4737
All.step All in 1013.6 0.9889 0.4508
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Figure 10: S3W8x: Residual acf (left), and cpgram (right) of model WE.
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Figure 11: S3W8x: Residual acf (left), and cpgram (right) of model All.step
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Figure 13: All.step: Observed vs fitted values.
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Figure 14: S3W8x: Residual histogram of model All.step vs the pdf of N(0,0.2)
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Figure 15: S3W8x: QQ-Plot of the All.step residuals and data from a normal mixture.
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3.3 Special Case of S3W6y

The results for the y-coordinate of the gaze are observed to be in line with that of the
x-coordinate of the gaze. The best model based on the smallest AIC value has a long
autoregressive part as well as a movement component, a universal phenomenon across all
subjects and movements. The special case of S3W6y is one such example. The best model
All.step is given by

yt = const + a1yt−1 + · · ·+ a7yt−7 + a9yt−9 + a12yt−12 + d2st−2 + noise (8)

As before the autoregressive part has a hole as yt−8, yt−10, yt−11 are not included. It is also
interesting to note that shoulder is the only covariate that enters the model. In most cases
wrist and elbow take precedence over the shoulder component.

Comparing the different models with the model All.step gives similar results as before.
There is a great reduction in the AIC when an autoregressive part is added to the model.
Also observe that the addition of the shoulder component helps increase the R2 and decrease
the residual SE by a small margin.

Table 4: Comparison between All.step and some other models.
Model AIC R2 Resid SE

M0 5500.690 0.5307 3.192
M12 1993.281 0.9829 0.6125
AR Only 1989.407 0.9828 0.6123
All.step 1978.648 0.9930 0.6089

The following figures compare the performance of the models M0 and All.step. Figures
16 and 17 show that residuals from model All.step behave like white noise as compared to
model M0 residuals which are highly correlated. Figure 18 shows that the fitted time series
traces the observed time series very closely.

3.4 Special Case of S2W4r

The distance coordinate is the square root of the sum of squares of the x and y- coordinates,
r =

√

x2 + y2. Experience indicates the results are no different from before.
As an example, consider the case of S2W4r. The distance r-coordinate, denoted by yt,

was regressed on past r-coordinates and movement covariates as before. The best model,
All.step, with the least AIC is given by

yt = const + a1yt−1 + · · ·+ a7yt−7 + a10yt−10 + a11yt−11 + a12yt−12

+ b0wt + b1wt−1 + · · ·+ b4wt−4

+ c0et + c1et−1 + noise (9)

The All.step model shows a hole (yt−8, yt−9 not included). The wrist component has all its
covariates and elbow has a hole(et−2) as well. The shoulder component is absent like in many
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Figure 16: S3W6y: Residual acf (top), and cpgram (bottom) of model M0.
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Figure 17: S3W6y: Residual acf (top), and cpgram (bottom) of model All.step
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Figure 18: S3W6y: Observed vs fitted values for model All.step.
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other cases. As before, the optimal model includes the first two components yt−1, yt−2, as
do all the other optimal models corresponding to the different gaze-movement cases. It is
interesting to see what happens when yt−1, yt−2 are removed from All.step. So, consider the
model

yt = const + a3yt−3 + · · ·+ a7yt−7 + a10yt−10 + a11yt−11 + a12yt−12

+ b0wt + b1wt−1 + · · ·+ b4wt−4

+ c0et + c1et−1 + noise (10)

and refer to is as All.step-12.
Table 5 summarizes the results of several models. Model All.step-12 shows a high AIC,

relatively low R2, and high residual standard error, but a much higher AIC value as compared
to the optimal model All.step.

Table 5: Comparison between All.step and competitors.
Model AIC R2 Resid SE

WE 5678.775 0.2095 2.484
M0 5896.906 0.0480 2.722
AR Only 1428.463 0.9761 0.4328
All.step-12 3171.945 0.8842 0.9005
All.step 1419.040 0.9765 0.4299

The analysis of residuals for the two models All.step and All.step-12 is illustrated in
the plots. Figures 19 and 20 shows there is considerable reduction in correlation of the
residuals. Notice that the cumulative periodogram plot of All.step-12 shoots way above the
upper bound in Figure 21. This is rectified in Figure 22 by the inclusion of yt−1, yt−2. This
exact same behavior has been observed time and again in many other cases which shows
that yt−1, yt−2 are essential for an adequate fit.

———————–
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Figure 19: S2W4r: Residual acf of model All.step-12.
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Figure 20: S2W4r: Residual acf of model All.step.
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Figure 21: S2W4r: Residual acf of model All.step-12.
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Figure 22: S2W4r: Residual acf of model All.step.
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3.5 Special Case of S2W4r: New using all 1241 obs.

Our experience indicates that the results from the distance r-coordinate, r =
√

x2 + y2, are
similar to those from the x- and y- coordinates. A typical example of r-coordinate eye-gaze
is given in terms of Subject 2, Watch, movements 4 (S2W4r). The eye-gaze time series is
shown in Figure 23 together with the wrist, elbow, and shoulder arm inputs.
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Figure 23: A time series from subject 2, movement 4, r-coordinate, under “Watch”, and arm
inputs sampled at 120Hz.

The r-coordinate eye-gaze, again denoted by yt, was regressed on past r-coordinates from
eye-gaze and from movement covariates as before. The optimal model, All.step, with the
smallest AIC, is given by

yt = const + a1yt−1 + · · · + a7yt−7 + a11yt−11 + b2wt−2 + c1et−1 + noise (11)

The optimal All.step model shows a hole as yt−8, yt−9, yt−10 are not included. Wrist and
elbow components are present but shoulder components are absent like in many other cases.

3.5.1 The Effect of Removing yt−1, yt−2

The optimal model includes the first two components yt−1, yt−2, as do all the other optimal
models corresponding to the different gaze-movement cases, regardless of the coordinate type.
Recall that at 120Hz this referes to the immediate past 16 milliseconds. It is interesting to
see what happens when yt−1, yt−2 are removed from the optimal All.step. Thus, we consider
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the model

yt = const + a3yt−3 + · · ·+ a7yt−7 + a11yt−11 + b2wt−2c1et−1 + noise (12)

and refer to is as All.step-y1y2.
Table 6 summarizes the results of several models. As in all cases, M0 is clearly far from

being optimal. Model All.step-y1y2 has a relatively low R2, relatively high residual standard
error, but a much higher AIC value as compared to My1y2, let alone the optimal model
All.step. Evidently, the removal of the immediate past 16 milliseconds from the optimal
model greatly diminishes the quality of the model. This has been observed throughout.
Further evidence of this deterioration is seen from a comparison of the residuals in Figures

Table 6: Comparison between All.step and competitors.
Model AIC R2 Resid SE

M0 7609.221 0.2735 5.1780
All.step-y1y2 4972.646 0.9139 1.7860
My1y2 2667.840 0.9864 0.7075
My1...y12 2647.410 0.9869 0.6989
All.step 2637.966 0.9869 0.6968

24-27. Interestingly, in terms of AIC, R2, and residual standard error, My1y2 with only two
autoregressive components yt−1, yt−2 is very close to My1...y12 with twelve autoregreessive
components yt−1, ..., yt−12. This gives further evidence of the significance of the imediate past
as embodied in yt−1, yt−2. We have seen this in the earlier case of S5W9x, and in many other
cases as well.

Figures 24 and 25 show there is considerable reduction in the autocorrelation of the
residuals. In addition, the cumulative periodogram plot of All.step-y1y2 shoots way above
the upper bound in Figure 26. This is rectified in Figure 27 by the inclusion of yt−1, yt−2. This
exact same behavior has been observed time and again in all other cases, which shows that
yt−1, yt−2 are essential for an adequate fit. This may be interpreted to mean that memory of
the immediate past on the order of 16 milliseconds is essential for movement prediction.
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Figure 24: S2W4r: Residual autocorelation of model All.step-y1y2. The autocorelation
points to an inadequate fit.
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Figure 25: S2W4r: Residual autocorrelation of the optimal model All.step. The autocorre-
lation resembles that of white noise, necessary for an adequate fit.
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Figure 26: S2W4r: Residual cumulative periodogram of model All.step-y1y2. The cumula-
tive periodogram points to correlated residuals.
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Figure 27: S2W4r: Residual cumulative periodogram of the optimal model All.step within
white noise bounds, necessary for an adequate fit.
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3.6 Special Case of S4I7x

The best model All.step is given by

yt = const + a1yt−1 + a2yt−2 + a3yt−3 + a5yt−5 + a6yt−6 + a9yt−9 + a10yt−10 + a11yt−11

+ b0wt + b1wt−1 + b3wt−3

+ d0sht + d1sht−1 + noise (13)

Note that the elbow component is absent from the optimal model.
The previous sections point out the importance for the first two components of the au-

toregressive part of the optimal model. It has been noticed that the cumulative periodogram
(cpgram) shoots up above the upper bound in their absence. Consider now the comparison
of the All.step with the model “AR12 Only” given by

yt = const + a1yt−1 + a2yt−2 + noise (14)

A comparison of various models is given in Table 7 below.

Table 7: Comparison between All.step and competitors.
Model AIC R2 Resid SE

M0 4123.587 0.8005 1.518
WE 4088.025 0.8074 1.493
AR Only 1978.404 0.9710 0.581
AR12 Only 2057.813 0.9683 0.6045
All.step 1946.82 0.9719 0.5725

From the table, the R2 value for the AR12 Only model suggests that yt−1, yt−2 account
for 96.8% of the variability in the data compared to a 97.2% in the case of the best model.
More important is the large drom in the corresponding AIC values.

The following figures compare the performances of model AR12 Only and All.step. The
autocorrelation and cumulative periodogram figures 28 and 29 show the improvement of the
model AR12 Only when the other AR components and arm components are added to it.
Figures 30 and 31 however are difficult to differentiate in this case.

4 Removal of yt−1, yt−2

Appear in all models!!! yt−1, yt−2 not far from optimal in the sense it explains about 97% −
98% of the total variation.

As was noted in the case of S2W4r, the removal of yt−1, yt−2 is detrimental to the adequacy
of the model. We see this again from Figure 32 where the cumulative periodograms get of
bound displaying a surprisingly homogeneous “badness”. Since the data were sampled at
120Hz, this may be interpreted to mean that the previous 16-20 milliseconds are critical for
prediction of eye-gaze in response to arm movement. In other words, in general, our models
predict on a scale of about 1/10 of a second, but for this to be successful, the previous
immediate eye-gaze on a scale of about 16-20 milliseconds must be part of the model.
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Figure 28: S4I7x: Residual acf (top), and cpgram (bottom) of model AR12 Only.
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Figure 29: S4I7x: Residual acf (top), and cpgram (bottom) of model All.step
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Figure 30: S4I7x: Observed vs fitted values for model All.step.
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Figure 31: S4I7x: Observed vs fitted values for model AR12 Only.
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Figure 32: Cpgrams of All.step-12 cases: S1W9x, S3W8x, S4W9x, S6W4x. The omission of
yt−1, yt−2 couses the cpgram to get out of bound.
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4.1 Summary of the Regression Results

To predict need past!!! Explain
In relating eye-gaze to arm movement, the picture which emerges from the previous

cases, and from the additional analysis of many other cases regarding both Watch and Imi-
tate shows that:
a. The optimal model in each case has a long autoregressive part, plus “some help” mainly
from the wrist, less from the elbow data, and even less from the shoulder data. The autore-
gressive component points to a long memory inherent in the gaze time series.
b. The analysis shows that when yt−1, yt−2 are not included in a model, the cpgram shoots
way above the upper bound. Therefore, these two components are essential for model ade-
quacy and well behaved residuals.
c. The unusually high R2 in All.step on the order of 98% and more means that the model
explain at least 98% of the variability in the data. This is due mainly to the autoregressive
component.
d. The cpgram from the AIC-optimal All.step is well within the white noise bounds as seen
for example in Figure 7. There were cases where the autoregressive part by itself was insuffi-
cient for achieving this ideal, and the inclusion of arm movement components was necessary.
e. There is a great improvement in model fit going from a model containing arm movement
only, M0, to the optimal model All.step containing a long memory autoregressive part.
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