Problem Session 2

1. Suppose M is a closed oriented Riemannian *n*-manifold, let G be a Lie group endowed with a bi-invariant metric, let \mathfrak{g} be the Lie algebra of G.

Let P be a principal G-bundle over M, let $\operatorname{ad} P := P \times_{\operatorname{ad}} \mathfrak{g}$ be the vector bundle associated with the adjoint representation. The ad-invariant inner product on \mathfrak{g} induces an inner product structure on $\operatorname{ad} P$. Let \mathcal{A} be the affine space of connections on P. Consider the following functional defined over \mathcal{A} :

$$\mathcal{F}(A) := \frac{1}{2} \int_M |F_A|^2.$$

(a) Let a be an ad P-valued 1-form on M. Show that

$$\frac{d}{dt}\Big|_{t=0}\mathcal{F}(A+ta) = \int_M \langle *a, d_A(*F_A) \rangle.$$

(b) We say that A is a critical point of \mathcal{F} if and only if

$$\frac{d}{dt}\Big|_{t=0}\mathcal{F}(A+ta) = 0$$

for all a. Show that A is a critical point of F if and only if $d_A^* F_A = 0$.

(c) For $A \in \mathcal{A}$, define

$$\operatorname{grad} \mathcal{F}(A) := d_A^* F_A$$

Let a be an ad P-valued 1-form. Verify that

$$\left\langle \frac{d}{dt} \Big|_{t=0} \operatorname{grad} \mathcal{F}(A+ta), b \right\rangle = \left\langle d_A a, d_A b \right\rangle + \left\langle F_A, [a \wedge b] \right\rangle$$

for all $b \in \Gamma(T^*M \otimes \operatorname{ad} P)$, and compute

$$\left. \frac{d}{dt} \right|_{t=0} \operatorname{grad} \mathcal{F}(A+ta).$$

(d)* Suppose A is a fixed smooth connection that is a critical point of \mathcal{F} . Consider the following second-order differential operator:

$$\operatorname{Hess}_A : a \mapsto \frac{d}{dt}\Big|_{t=0} \operatorname{grad} \mathcal{F}(A+ta).$$

Show that $\operatorname{Im} d_A \subset \ker \operatorname{Hess}_A$.

- 2. Show that the quotient space of $\mathfrak{sl}_2(\mathbb{C})$ by the adjoint action of $\mathrm{SL}_2(\mathbb{C})$ is not Hausdorff.
- 3. Suppose G is a compact Lie group acting smoothly on a compact manifold M. Show that the quotient topological space M/G is Hausdorff.