Problem Session 3.

- 1. Let *E* be an Hermitian vector bundle over a Riemannian manifold *M*. Let *A*, *B* be two Hermitian connections on *E*. Show that $d_A^*(A B) = 0$ if and only if $d_B^*(A B) = 0$.
- 2. Suppose V, W are two Banach spaces. Consider a map

$$f: V \to W$$
$$x \mapsto L(x) + Q(x, x),$$

where L is a linear isomorphism, Q is a quadratic map, and there exists a constant C > 0 such that $||Q(x_1, x_2)|| \le C \cdot ||x_1|| \cdot ||x_2||$ for all $x_1, x_2 \in V$.

- (a) Let $r := \frac{1}{4C \cdot ||L^{-1}||}$, show that f is injective on the open ball B(r) centered at zero with radius r.
- (b) Show that $f^{-1}: f(B(r)) \to B(r)$ is continuous.
- (c)* Show that $f^{-1}: f(B(r)) \to B(r)$ is a smooth map. (Hint: By the inverse function theorem, we only need to show that df are isomorphisms.)
- (a) Suppose P is an SU(2) bundle on a closed oriented 3-manifold M. Consider the associated SL₂(C) bundle

$$\widetilde{P} := P \times_{\mathrm{SU}(2)} \mathrm{SL}_2(\mathbb{C})$$

and the associated Lie algebra bundle

ad
$$P := P \times_{\mathrm{SU}(2)} \mathfrak{su}(2).$$

Suppose A is a connection on P and ϕ is a section of $T^*M \otimes \operatorname{ad} P$, then $A + i\phi$ defines a connection on \widetilde{P} by adding the T^*M -valued matrices in local coordinates.

Show that every connection \hat{A} of \widetilde{P} decomposes uniquely as

$$\hat{A} = A + i\phi$$

as described above.

(b) Let $\hat{A} = A + i\phi$ be an $SL_2(\mathbb{C})$ -connection. Show that $F_{\hat{A}} = 0$ if and only if

$$F_A = \phi \wedge \phi,$$

$$d_A \phi = 0.$$

(c)* Let (A_n, ϕ_n) be a sequence of solutions to the following system of equations:

$$F_A = \phi \land \phi,$$

$$d_A \phi = 0,$$

$$d_A^* \phi = 0.$$

Suppose U is a small open ball on M, and suppose that after choosing a local trivialization and applying suitable gauge transformations, we have

$$\begin{aligned} d^*A_n &= 0, \\ \|A_n\|_{L^2_3(U)} &\leq C, \\ \|\phi_n\|_{L^2_3(U)} &\leq C, \end{aligned}$$

for all n. Show that (A_n, ϕ_n) has a convergent subsequence in C^{∞} on compact subsets of U.