Problem Session 3.

1. Let E be an Hermitian vector bundle over a Riemannian manifold M. Let A, B be two Hermitian connections on E. Show that $d_{A}^{*}(A-B)=0$ if and only if $d_{B}^{*}(A-B)=0$.
2. Suppose V, W are two Banach spaces. Consider a map

$$
\begin{aligned}
f: V & \rightarrow W \\
x & \mapsto L(x)+Q(x, x)
\end{aligned}
$$

where L is a linear isomorphism, Q is a quadratic map, and there exists a constant $C>0$ such that $\left\|Q\left(x_{1}, x_{2}\right)\right\| \leq C \cdot\left\|x_{1}\right\| \cdot\left\|x_{2}\right\|$ for all $x_{1}, x_{2} \in V$.
(a) Let $r:=\frac{1}{4 C \cdot\left\|L^{-1}\right\|}$, show that f is injective on the open ball $B(r)$ centered at zero with radius r.
(b) Show that $f^{-1}: f(B(r)) \rightarrow B(r)$ is continuous.
(c)* Show that $f^{-1}: f(B(r)) \rightarrow B(r)$ is a smooth map. (Hint: By the inverse function theorem, we only need to show that $d f$ are isomorphisms.)
3. (a) Suppose P is an $\mathrm{SU}(2)$ bundle on a closed oriented 3 -manifold M. Consider the associated $\mathrm{SL}_{2}(\mathbb{C})$ bundle

$$
\widetilde{P}:=P \times_{\mathrm{SU}(2)} \mathrm{SL}_{2}(\mathbb{C})
$$

and the associated Lie algebra bundle

$$
\operatorname{ad} P:=P \times_{\operatorname{SU}(2)} \mathfrak{s u}(2) .
$$

Suppose A is a connection on P and ϕ is a section of $T^{*} M \otimes \operatorname{ad} P$, then $A+i \phi$ defines a connection on \widetilde{P} by adding the $T^{*} M$-valued matrices in local coordinates.
Show that every connection \hat{A} of \widetilde{P} decomposes uniquely as

$$
\hat{A}=A+i \phi
$$

as described above.
(b) Let $\hat{A}=A+i \phi$ be an $\mathrm{SL}_{2}(\mathbb{C})$-connection. Show that $F_{\hat{A}}=0$ if and only if

$$
\begin{aligned}
F_{A} & =\phi \wedge \phi \\
d_{A} \phi & =0
\end{aligned}
$$

(c)* Let $\left(A_{n}, \phi_{n}\right)$ be a sequence of solutions to the following system of equations:

$$
\begin{aligned}
F_{A} & =\phi \wedge \phi \\
d_{A} \phi & =0 \\
d_{A}^{*} \phi & =0
\end{aligned}
$$

Suppose U is a small open ball on M, and suppose that after choosing a local trivialization and applying suitable gauge transformations, we have

$$
\begin{aligned}
d^{*} A_{n} & =0 \\
\left\|A_{n}\right\|_{L_{3}^{2}(U)} & \leq C \\
\left\|\phi_{n}\right\|_{L_{3}^{2}(U)} & \leq C
\end{aligned}
$$

for all n. Show that $\left(A_{n}, \phi_{n}\right)$ has a convergent subsequence in C^{∞} on compact subsets of U.

