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Abstract

This note contains a proof for the hypoellipticity of admissible Folland-
Stein heat operators. The techniques presented here were first used by
Greiner [3] for different problems, and the main result of this article is
implicitly contained in [1]. The purpose of this note is to give a more
straightforward and self-contained presentation.

1 Introduction

Let n be a positive integer. A partial differential operator P defined on
Rn is called hypoelliptic, if for every distribution µ defined on an open
subset U of Rn such that Pµ is smooth, µ must also be smooth.

Now consider differential operators on R2n+1. Let x1, x2, · · · , xn, y1,
y2, · · · , yn, t be the coordinate functions. Define the following vectors
fields:

Xj =
∂

∂xj
+ 2yj

∂

∂t
, j = 1, 2, · · · , n

Yj =
∂

∂yj
− 2xj

∂

∂t
, j = 1, 2, · · · , n

T =
∂

∂t
.

Let

Zj =
1

2
(Xj − iYj),

Z̄j =
1

2
(Xj + iYj),

then [Zj , Zk] = [Z̄j , Z̄k] = 0, and [Zj , Z̄k] = −2i δjkT . The Folland-Stein
operator on R2n+1 is defined as

Lα = −1

2

n∑
j=1

(ZjZ̄j + Z̄jZj) + iα T,

where α ∈ R is a fixed constant. The parameter α is called admissible if
±α 6= n, n+ 2, n+ 4, · · · .

The key property of the Folland-Stein operator is the following:

Theorem 1.1 (Folland-Stein [2]). The operator Lα is hypoelliptic if and
only if α is admissible.

It is natural to ask about the hypoellipticity of the heat operator of
Lα as well. In fact, one has the following result.
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Theorem 1.2 (Greiner [3], Calin-Chang-Furutani-Iwasaki [1]). Let m be
a positive integer, then the operator

∂

∂s
+ (Lα)m

is hypoelliptic on R2n+2 if and only if α is admissible.

The “only if” part of theorem 1.1 and 1.2 can be proved by a direct
construction. When α is not admissible, Folland and Stein [2] constructed
a locally integrable function ϕα on R2n+1 such that ϕα has a singularity
at zero but Lα(ϕα) = 0 in the sense of distributions. Therefore neither
Lα nor ∂

∂s
+ (Lα)m is hypoelliptic.

In the following sections we will give a proof for the hypoellipticity of
∂
∂s

+ (Lα)m when α is admissible. The techniques presented here were
first used by Greiner [3] to study left-invariant operators on Heisenberg
groups. In [1] the idea was applied to the heat operator ∂

∂s
+ (Lα)m, and

a formula for the heat kernel was given. Although it is possible to prove
hypoellipticity from properties of the heat kernel, the formula given in
[1] is quite involved and the result does not follow in an immediate way.
This note presents a more straightforward and self-contained proof for the
result. Of course, the hypoellipticity of the operator Lα is implied by the
hypoellipticity of ∂

∂s
+ (Lα)m.

I would like to thank Clifford Taubes and Brendan Mclellan for their
tremendous help in the preparation of this note.

2 Fourier transform with respect to t

In cartesian coordinates, the operator Lα is written as

Lα = −1

4
(
∑
j

∂2

∂xj
+
∑
j

∂2

∂y2j
)+

∑
j

(xj
∂

∂yj
− yj

∂

∂xj
)
∂

∂t
−
∑
j

(x2j + y2j )
∂2

∂t2
+ iα

∂

∂t
.

Let S (R2n+1) be the Schwartz space on R2n+1. Taking the Fourier
transform with respect to the t variable, every f ∈ S (R2n+1) can be
written as

f(x1, · · · , xn, y1, · · · , yn, t) =

∫ ∞
−∞

f̂ξ(x1, · · · , xn, y1, · · · , yn)eiξtdξ.

The Plancherel identity states that

‖f‖2L2(R2n+1) = 2π

∫ ∞
−∞
‖f̂ξ‖2L2(R2n) dξ.

The Fourier transform of the operator Lα reads as

(Lαf)∧ξ =
[
− 1

4
(
∑
j

∂2

∂xj
+
∑
j

∂2

∂y2j
)+

iξ ·
∑
j

(xj
∂

∂yj
− yj

∂

∂xj
) +

∑
j

(x2j + y2j )ξ2 − αξ
]
(f̂ξ). (1)

Let (Lα)∧ξ be the operator acting on f̂ξ in right hand side of (1). This
section finds a diagonalization for the operator (Lα)∧ξ on L2(R2n) when

2



ξ is nonzero. For the rest of this section ξ will be considered as a fixed
nonzero constant.

Define the following differential operators on R2n:

a†xj = |ξ|xj −
1

2

∂

∂xj
,

axj = |ξ|xj +
1

2

∂

∂xj
,

a†yj = |ξ|yj −
1

2

∂

∂yj
,

ayj = |ξ|yj +
1

2

∂

∂yj
.

Consider the function ê0 = exp
(
− |ξ| · (

∑
j x

2
j +

∑
j y

2
j )
)

and define e0 =
ê0/‖ê0‖L2 . We have axj (e0) = ayj (e0) = 0.

Now define

uj = axj − iayj ,

u†j = a†xj + ia†yj ,

vj = axj + iayj ,

v†j = a†xj − ia
†
yj .

Then

[uj , u
†
k] = 2δjk|ξ|,

[u†j , uk] = −2δjk|ξ|,

[vj , v
†
k] = 2δjk|ξ|,

[v†j , vk] = −2δjk|ξ|,

and all the other Lie brackets among uj , u
†
j , vj , v

†
j are zero.

For a (2n)-tuple of nonnegative integers I = (a1, · · · , an, b1, · · · , bn),
let a =

∑
j aj , b =

∑
j bj , a! =

∏
j aj !, b! =

∏
j bj !. Define

eI =
(u†1)a1 · · · (u†n)an(v†1)b1 · · · (v†n)bn(e0)

[(2|ξ|)a+b a! b!]1/2
.

Since uj(e0) = vj(e0) = 0, we have

〈(u†1)a1 · · · (u†n)an(v†1)b1 · · · (v†n)bn(e0), (u†1)a1 · · · (u†n)an(v†1)b1 · · · (v†n)bn(e0)〉

=〈e0, (vn)bn · · · (v1)b1(un)an · · · (u1)a1(u†1)a1 · · · (u†n)an(v†1)b1 · · · (v†n)bn(e0)〉

=〈e0, (2|ξ|)a+ba!b! (e0)〉

=(2|ξ|)a+ba!b!,

therefore ‖eI‖L2 = 1. Similarly, if I 6= I ′ = (a′1, · · · , a′n, b′1, · · · , b′n),
without loss of generality we may assume a′1 > a1, then

〈(u†1)a
′
1 · · · (u†n)a

′
n(v†1)b

′
1 · · · (v†n)b

′
n(e0), (u†1)a1 · · · (u†n)an(v†1)b1 · · · (v†n)bn(e0)〉

=〈e0, (vn)b
′
n · · · (v1)b

′
1(un)a

′
n · · · (u1)a

′
1(u†1)a1 · · · (u†n)an(v†1)b1 · · · (v†n)bn(e0)〉

=〈e0, 0〉
=0,
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therefore 〈eI , eI′〉 = 0. Thus we have shown that the vectors in the set
{eI}I∈Z2n

≥0
are orthonormal to each other in L2(R2n). A well known prop-

erty about quantum harmonic oscillators states that vectors of the form

(a†x1)α1 · · · (a†xn)αn(b†y1)β1 · · · (a†yn)βn(e0)

give a complete basis for L2(R2n). Therefore the set {eI}I∈Z2n
≥0

is a com-

plete orthonormal basis of L2(R2n).
Now we compute the operator (Lα)∧ξ in terms of the basis {eI}. Notice

that

[i(yj
∂

∂xj
− xj

∂

∂yj
), u†k] = δjku

†
k,

[i(yj
∂

∂xj
− xj

∂

∂yj
), v†k] =− δjkv†k,

and

i(yj
∂

∂xj
− xj

∂

∂yj
)(e0) = 0,

therefore when I = (a1, · · · , an, b1, · · · , bn), we have

i(yj
∂

∂xj
− xj

∂

∂yj
)(eI) = (a− b)eI .

On the other hand,

− 1

4
(
∑
j

∂2

∂x2j
+
∑ ∂2

∂y2j
) +

∑
j

(x2j + y2j )ξ2

=
1

2
(
∑
j

u†juj +
∑
j

v†jvj) + n|ξ|.

Therefore

(Lα)∧ξ (eI)

=
[
− 1

4
(
∑
j

∂2

∂xj
+
∑
j

∂2

∂y2j
) + iξ

∑
j

(xj
∂

∂yj
− yj

∂

∂xj
)+

∑
j

(x2j + y2j )ξ2 − αξ
]
(eI)

=
[1

2
(
∑
j

u†juj +
∑
j

v†jvj) + n|ξ|
]
(eI) + ξ(b− a)− αξ

]
(eI)

=
[
|ξ|(a+ b) + ξ(b− a) + n|ξ| − αξ

]
(eI).

In other words,

(Lα)∧ξ (eI) =

{
(2b+ n− α)|ξ| eI if ξ > 0,

(2a+ n+ α)|ξ| eI if ξ < 0.
(2)

Equation (2) shows that (Lα)∧ξ is diagonalized under the basis {eI}I∈Z2n
≥0

.

Let λI be the eigenvalue of (Lα)∧ξ associated to eI . When α is admissible,
it follows from equation (2) that there is a positive constant C, depending
only on n and α, such that{

C · b|ξ| ≥ |λI | ≥ 1
C
· b|ξ| if ξ > 0

C · a|ξ| ≥ |λI | ≥ 1
C
· a|ξ| if ξ < 0

(3)
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holds for every I.
We can also compute the Fourier transforms of the derivative operators

along Zj and Z̄j . When ξ > 0, the Fourier transforms of the operators
are

(Zj)
∧
ξ =

1

2
(
∂

∂xj
− i ∂

∂yj
) + i|ξ|(yj + ixj) = v†j ,

(Z̄j)
∧
ξ =

1

2
(
∂

∂xj
+ i

∂

∂yj
) + i|ξ|(yj − ixj) = −vj ,

and when ξ < 0, the Fourier transforms of the operators are

(Zj)
∧
ξ =

1

2
(
∂

∂xj
− i ∂

∂yj
)− i|ξ|(yj + ixj) = uj ,

(Z̄j)
∧
ξ =

1

2
(
∂

∂xj
+ i

∂

∂yj
)− i|ξ|(yj − ixj) = −u†j .

For I = (a1, · · · , an, b1, · · · , bn), let

I+aj = (a1, · · · , aj−1, aj + 1, aj+1, · · · , an, · · · , bn),

I+bj = (a1, · · · , an, b1, · · · , bj−1, bj + 1, bj+1 · · · , bn),

I−aj = (a1, · · · , aj−1, aj − 1, aj+1, · · · , an, · · · , bn),

I−bj = (a1, · · · , an, b1, · · · , bj−1, bj − 1, bj+1 · · · , bn).

Then, when ξ > 0 we have

(Zj)
∧
ξ (eI) = (2|ξ|(bj + 1))1/2 · e

I+
bj

, (4)

and

(Z̄j)
∧
ξ (eI) =

−(2|ξ|bj)1/2 · eI−
bj

if bj ≥ 1,

0 otherwise.
(5)

When ξ < 0 we have

(Zj)
∧
ξ (eI) =

{
(2|ξ|aj)1/2 · eI−aj if aj ≥ 1,

0 otherwise,
(6)

and
(Z̄j)

∧
ξ (eI) = −(2|ξ|(aj + 1))1/2 · e

I+aj
. (7)

3 Hypoellipticity of ∂
∂s + (Lα)

m

Let m be a positive integer, and α ∈ R be a fixed admissible constant.
This section proves the hypoellipticity of ∂

∂s
+ (Lα)m. Taking the Fourier

transform with respect to the t and s variables, we can write every function
f ∈ S (R2n+2) as

f(x1, · · · , xn, y1, · · · , yn, t, s)

=

∫
ξ,η

eiξteiηsf̂ξ,η(x1, · · · , xn, y1, · · · , yn) dξdη.

The Fourier transform of the heat operator then becomes( ∂
∂s

+ (Lα)m
)∧
ξ,η

=
[
(Lα)∧ξ

]m
+ iη. (8)
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The previous section constructed a set of functions eI ∈ L2(R2n), with
I ∈ Z2n

≥0, such that the set {eI} is a complete orthonormal basis of L2(R2n)
and it diagonalizes the operator (Lα)∧ξ . Since in this section we will
consider different values for ξ, we will use {eI,ξ} instead of {eI} to denote
the basis corresponding to (Lα)∧ξ . Use λI,ξ to denote the eigenvalue of
(Lα)∧ξ with respect to eI,ξ. Then equation (8) can be written as( ∂

∂s
+ (Lα)m

)∧
ξ,η

(eI,ξ) = (λmI + iη)eI,ξ. (9)

Now for any l ∈ Z, define a norm ‖ · ‖l on S (R2n+2) by

‖f‖2l :=

∫
ξ,η

∑
I

(1 + |λI,ξ|+ |η|1/m)l|〈f̂ξ,η, eI,ξ〉|2 dξdη.

Before we proceed further, we need to make a convention about the
order of certain differential operators on R2n+2. Consider the scaling
map ∆c : R2n+2 → R2n+2 which sends (x1, · · · , xn, y1, · · · , yn, t, s) to
(cx1, · · · , cxn, cy1, · · · , cyn, c2t, c2ms). A differential operator P on R2n+2

is called homogeneous of order k if

∆∗c(P(f)) = c−1P∆∗c(f)

holds for every pair of c ∈ R+ and f ∈ C∞(R2n+2). The derivatives
with respect to Zj and Z̄j are then homogeneous of order 1, and ∂

∂s
is

homogeneous of order 2m. For an integer k ≥ 1, let Dk be the finite set of
homogeneous differential operators of order k consisting of compositions
of operators among Z1, · · · , Zn, Z̄1, · · · Z̄n, ∂∂s . For example, we have Zj ◦
Z̄k ∈ D2, but (Zj + Zk) 6∈ D1. For l ≥ 0, define another norm ‖ · ‖′l on
S (R2n+2) as

‖f‖′l :=
∑

0≤k≤l

∑
P∈Dk

‖Pf‖L2(R2n+2).

The Plancherel identity, the inequality (3), and equations (4) to (7) then
imply that the norms ‖ · ‖l and ‖ · ‖′l are equivalent when l ≥ 0.

Now consider a function χ ∈ C∞0 (R2n+2). It follows immediately from
the definition that the multiplication map

mχ : S (R2n+2)→ S (R2n+2)

f 7→ χf

is a bounded linear operator in the ‖ · ‖′l norm. Therefore, when l ≥ 0,
mχ is also bounded in the ‖ · ‖l norm. In fact, the same result holds for
negative l as well, as we have the following

Lemma 3.1. Let χ ∈ C∞0 (R2n+2), then for every l ∈ Z, the map mχ is
bounded in the ‖ · ‖l norm.

Proof. If l ≥ 0, the result is already proved in the previous paragraph.
If l < 0, for every f ∈ S (R2n+2) consider the linear functional

Tf : S (R2n+2)→ C

g 7→
∫
fg.

If we endow S (R2n+2) with the ‖·‖−l norm, then ‖f‖l equals the operator
norm of Tf . Notice that T(mχf) = Tf ◦mχ. Since −l ≥ 0, the operator
mχ is bounded in the ‖ · ‖−l norm, hence the operator norm of ‖T(mχf)‖
is bounded by a constant times the operator norm of ‖Tf‖. Therefore mχ

is bounded in the ‖ · ‖l norm.

6



Let Sl be the completion of S (R2n+2) under the norm ‖ · ‖l. Then Sl
is a Hilbert space, and Sl is natually isomorphic to the dual of S−l. When
l ≥ l′, we have Sl ⊂ Sl′ . By lemma 3.1, the map mχ extends to bounded
linear maps on Sl.

Every element in µ ∈ Sl defines a distribution on R2n+2. In fact,
when l ≥ 0, we have Sl ⊂ L2(R2n+2). When l < 0, consider a testing
function f ∈ S (R2n+2). The operator Tf defined in the proof of lemma
3.1 extends to a bounded operator on Sl. Define (µ, f) := Tf (µ), then
(µ, f) is continuous with respect to f in the ‖ · ‖−l norm, hence such an
assignment makes µ a distribution on R2n+2.

Conversely, we have the following lemma:

Lemma 3.2. Let µ be a compactly supported distribution on R2n+2, then
there exists l ∈ Z such that µ ∈ Sl.

Proof. The distribution µ defines a linear functional from S (R2n+2) to
C. Since µ is compactly supported, there exists an integer N > 0 such
that µ is bounded in the CN norm. By the Sobolev embedding theorem,
there exists M > 0 such that µ is bounded in the L2

M norm. Notice that
∂
∂t

= i
2
[Zj , Z̄j ]. Therefore, if we define M̂ = M ·max{2,m}, then for any

bounded open set U ⊂ R2n+2, there exists a constant C depending on U
and M such that

C ‖f‖′
M̂
≥ ‖f‖L2

M
, ∀f ∈ C∞0 (U).

Since µ is compactly supported, this implies that µ is bounded in the
‖ · ‖′

M̂
norm. Recall that ‖ · ‖′

M̂
and ‖ · ‖M̂ are equivalent norms, therefore

µ defines a bounded linear functional on SM̂ . Since the dual space of SM̂
is canonically isomorphic to S−M̂ , there exists an element µ′ ∈ S−M̂ such
that

〈µ′, f〉L2 = µ(f), ∀f ∈ SN̂ .
The equation above implies that µ′ equals µ when viewed as distributions
on R2n+2, hence the result is proved.

We also have the following regularity result:

Lemma 3.3. Let µ be a distribution on R2n+2. If µ ∈ Sl for every l,
then µ must be smooth.

Proof. We only need to prove that χµ is smooth for every χ ∈ C∞0 (R2n+2).
Since the multiplication by χ gives a bounded linear operator on Sl, the
assumption on µ implies that χµ ∈ Sl for every l.

Let U ⊂ R2n+2 be a bounded open set such that suppχ ⊂ U . For any
N > 0, there exists a constant C1 and a positive integer M such that

C1 ‖f‖L2
M
≥ ‖f‖CN .

Let M̂ = M ·max{2,m}, then there is a constant C2 depending on U and
M such that

C2 ‖f‖M̂ ≥ ‖f‖L2
M
.

Combining the two inequalities above, we conclude that χµ has bounded
CN norm. Since N is arbitrary, this implies that χµ is smooth, hence the
result is proved.

With the preparations above, we can now present the proof of the
main theorem
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Theorem 3.4 (Greiner [3], Calin-Chang-Furutani-Iwasaki [1]). Suppose
α is admissible, then the operator ∂

∂s
+ (Lα)m is hypoelliptic.

Proof. Let U be an open subset of R2n+2. Let µ be a distribution on
R2n+2 such that

[
∂
∂s

+ (Lα)m
]
(µ)|U is smooth. We need to prove that µ

is smooth on U . Take an arbitrary open subset U ′ ⊂ U such that U ′ ⊂ U ,
we only need to prove that µ is smooth on U ′. To simplify notations, let
D = ∂

∂s
+ (Lα)m.

Notice that equation (9) has the following consequence: for any f ∈ Sl,
if Df ∈ Sl, then f ∈ Sl+2m. Moreover, we have the following Garding-
type inequality:

C(‖D(f)‖l + ‖f‖l) ≥ ‖f‖l+2m, (10)

where C is a constant depending on n, α and l.
By lemma 3.2, we may assume that µ ∈ Sl for some integer l. Lemma

3.1 then implies χµ ∈ Sl.
Recall that previously we have defined Dk to be the finite set of ho-

mogeneous differential operators of order k consisting of compositions of
operators among Z1, · · · , Zn, Z̄1, · · · Z̄n, ∂∂s . For an element f ∈ Sl, use

∇kf to denote the tuple (Pf)P∈Dk . Inequality (3) and equations (4) to
(7) then imply that when f ∈ Sl, every entry of ∇jf is an element of
Sl−j .

Notice that

D(χµ) = χD(µ) +

2m−1∑
j=0

∇m−jχ�∇jµ,

where � are some bilinear pairings depending smoothly on the coordinates
(x1, · · · , xn, y1, · · · , yn, s, t). By the assumption, χD(µ) is smooth and
compactly supported. Therefore by lemma 3.1, the distribution D(χµ) is
an element of Sl−2m+1.

Now we have χµ ∈ Sl ⊂ Sl−2m+1, and D(χµ) ∈ Sl−2m+1. Therefore,
by the previous discussion, the distribution χµ is an element of Sl+1. The
smoothness of µ on U ′ then follows from a standard bootstrap argument
and lemma 3.3.
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