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Abstract

This note contains a proof for the hypoellipticity of admissible Folland-
Stein heat operators. The techniques presented here were first used by
Greiner [3] for different problems, and the main result of this article is
implicitly contained in [1]. The purpose of this note is to give a more
straightforward and self-contained presentation.

1 Introduction
Let n be a positive integer. A partial differential operator P defined on

R™ is called hypoelliptic, if for every distribution p defined on an open
subset U of R™ such that Py is smooth, 4 must also be smooth.

Now consider differential operators on R2"t1 Let T1, T2, ***y T, Y1,
Y2, ‘-, Yn, t be the coordinate functions. Define the following vectors
fields:

19} 0
Xi= — 49y, — i=1.2 ...
J 81’3 + Yj at ) J ) <y y
0 0
Y, = — — 25 =1,2,-
J ay] T at ) J ) <y yn
_9
ot
Let
1 .
Zj = 5(X; —iYj),
_ 1 )
Zj = 5(X; +1Y5),
then [Z;, Zx) = [Zj,Zx]) = 0, and [Z;, Zy] = —2i6;5T. The Folland-Stein
operator on R?"*! is defined as
1 — _
ga = —= (ZJZ]+Z]ZJ)+ZQT,

j=1
where a € R is a fixed constant. The parameter « is called admissible if
ta#nn+2,n+4,---.
The key property of the Folland-Stein operator is the following:

Theorem 1.1 (Folland-Stein [2]). The operator £ is hypoelliptic if and
only if o is admissible.

It is natural to ask about the hypoellipticity of the heat operator of
%, as well. In fact, one has the following result.



Theorem 1.2 (Greiner (3], Calin-Chang-Furutani-Iwasaki [1]). Let m be
a positive integer, then the operator

0 m
Bs + (L)

R27+2

is hypoelliptic on if and only if o is admissible.

The “only if” part of theorem 1.1 and 1.2 can be proved by a direct
construction. When « is not admissible, Folland and Stein [2] constructed
a locally integrable function ¢ on R?"*! such that ¢, has a singularity
at zero but %, (¢o) = 0 in the sense of distributions. Therefore neither
Lo nor & + (Za)™ is hypoelliptic.

In the following sections we will give a proof for the hypoellipticity of
% + (Z2)™ when « is admissible. The techniques presented here were
first used by Greiner [3] to study left-invariant operators on Heisenberg
groups. In [1] the idea was applied to the heat operator % + (ZLa)™, and
a formula for the heat kernel was given. Although it is possible to prove
hypoellipticity from properties of the heat kernel, the formula given in
[1] is quite involved and the result does not follow in an immediate way.
This note presents a more straightforward and self-contained proof for the
result. Of course, the hypoellipticity of the operator .%, is implied by the
hypoellipticity of % +(Z)™.

I would like to thank Clifford Taubes and Brendan Meclellan for their
tremendous help in the preparation of this note.

2 Fourier transform with respect to ¢

In cartesian coordinates, the operator %, is written as
1 0? 0?
Lo =—= — —
12200 " 20
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J

Let . (R*™™!) be the Schwartz space on R*™™!. Taking the Fourier
transform with respect to the ¢ variable, every f € Z(R*"*!) can be
written as

o
f(xla"' sy Tny Y1, 00t 7ynat) :/ fﬁ(xlv'” sy Tny Y1, 00t 7yn)elgtd€-
—o0

The Plancherel identity states that

11122 ensny = 27 / el 52y dE.

The Fourier transform of the operator .%, reads as
i =1- O E ey Ty
o 4 - z; - oy3
. ) a ] 8 2 2\ ~2 A 1
lf'Z(wgfj—yjaij)-&- (5 + ;)& —at](fe). (1)
J

Let (Za){ be the operator acting on fe in right hand side of (1). This
section finds a diagonalization for the operator (Z.)¢ on L?*(R*") when



& is nonzero. For the rest of this section £ will be considered as a fixed

nonzero constant.
Define the following differential operators on R?™:

af, = l¢la; —éai

= lelas + 5 5o,
aj, = Iélyjféaiyj,
av, = €l + 5o

Consider the function éy = exp ( -
éo/l|éoll 2. We have ay; (eo) = ay; (eo) = 0.

Now define
Uj = Ag; — iQy,,
u; = alj + iaLJ.7
Vj = Qo +lay;,
v;- = alj — iazj.
Then

[uj»UL] = 26]k‘£|7
[ul, ux] = —26,x[¢],
[’Uj,'U};] = 26]k‘£|7

o], ve] = —28;1¢],

and all the other Lie brackets among w;, u;, vj, v; are zero.

For a (2n)-tuple of nonnegative integers I = (a1, - ,an,b1,- -
let a =73 a;,b=7%,b;, al =]]; a;!, bl =]]; b;!. Define
er = (D)™ - (ud) " ()" - - - ()" (eo)
(@IEN=+ T 72 |
Since uj(eo) = vj(eo) = 0, we have
(u))™ S (wh)" " (e0), ()™ - (ul) ™ (o)™ -
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<607 ( ) " "(Ul)bl(un)a"
(eo, (2|€)“Talb! (eo))
(

(wn)™ (ul)™ - (uh) ™ (o))" -

=(2[¢))* " atl,
therefore |ler||p2 = 1. Similarly, if I # I’ = (a, -+ ,an, b}
without loss of generality we may assume a} > a1, then

()™ - (uh)™ @)™ - (h) ™ (e0), ()™ - (ul)™ (0])™ -
=(eo, (a)"™ - (1) ()™ -+ ()™ () - ()™ (0])" -
:<6070>
:0’
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+bn),
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(v})"" (ea))

(v1)"" (e0))



therefore (er,e;/) = 0. Thus we have shown that the vectors in the set
{61}1622;6 are orthonormal to each other in L?(R*"). A well known prop-

erty about quantum harmonic oscillators states that vectors of the form
(al,)*t - (al, )™ (b)) - (af,) " (e0)

give a complete basis for L?(R*™). Therefore the set {61}1622;6 is a com-

plete orthonormal basis of L?(R?*™).

Now we compute the operator (£, )¢ in terms of the basis {er}. Notice
that

. 0 0
[Z(ngj fwj@),ul} = jku;;,
. 17} 0
[i(y;5— — x55—),vi] = — 60},
Oz Yj
and 9 5
i(yj5— —xj5—)(e0) =0,
’Bz]. Jayj
therefore when I = (a1, -+ ,an,b1, -+ ,bn), we have

. 0 0
Z(yja* - a)(el) = (a —b)er.
Tj J

On the other hand,
1 ? 92 2 2442
- Z(Z 027 + Z 37?4]2) + Z(mj +45)¢
J J
1
= 5(2 u;u]- + ZU;U]') + nlg|.
J J

Therefore

(Za)e (er)
1 ? ? . 0 0
=[- Z(;ij +;87y]2.) +Z§;(l‘j67yj —yjachH'

D@ +y)E” — ag] (en)

= [ s+ 3 vu) + nlél] (e) + &0 — @) — ag](er)
= [lel(a+b)+ &b — o) + nlé] - ag] e1)

In other words,
pony_ J@bn—agler g0,
(La)e (er) = {(2a+n+a)§|61 if £ <0. ?

Equation (2) shows that (.Z,)¢ is diagonalized under the basis {GI}IGZ§%~

Let A be the eigenvalue of (,=%)¢)€A associated to e;. When « is admissible,

it follows from equation (2) that there is a positive constant C, depending
only on n and «, such that

C-ble] > A1| > & -blg] i E>0

> &-alg] ifE<0

C-ale > || ®)



holds for every I.

We can also compute the Fourier transforms of the derivative operators
along Z; and Z;. When £ > 0, the Fourier transforms of the operators
are

1, 0 .0 . .
(Z)e = 5(@ - Z@T/j) +il€|(y; + iz;) = v,
1

70— L9 O il — i) = —v,
(204 = 3Gy +igy) +ilelln —ix) = —v,.

and when £ < 0, the Fourier transforms of the operators are

AV I N P T
(Zj)é—Z(ij Zayj) il€|(y; + iz;) = uy,
= 1, 0 0

(Z))¢ = 55, +ig,) — il —ia)) = —uj.

For I = (a1,--- 7an7b17"' 7bn)7 let

+ _

Iaj *(alv"' 7aj—17aj+17aj+17"' y Any t o ,bn)7
+

ij :(ala"' 7a’mb17"' 7bj*17bj+17bj+1"' ,bn)7
Ia_j :(alz"' 7aj*1,a’j_1aaj+1,"' y Any - e ,bn)7

I, = (a1~ an,br, -+ bj1,b5 — L bjpa -+, bn).

Then, when £ > 0 we have

(Z3)e (er) = (el (b5 + 1)/ ey (4)
and
5 \A —(21¢[b)? - e,-  ifb; > 1,
(Z;)e (er) = fo; _ (5)
0 otherwise.

When £ < 0 we have

2 j 1/2 . - f j 2 17
(2 ex) = {( [€las)? e, ifa | ©
otherwise,
and ~
(Z))é (er) = —(2el(a; +1))" e, )

3 Hypoellipticity of % + (L)

Let m be a positive integer, and a € R be a fixed admissible constant.
This section proves the hypoellipticity of % + (Z,)™. Taking the Fourier
transform with respect to the ¢ and s variables, we can write every function
f € SR as

f(l’l,'“ y Tny Y1, 000 ay’ﬂ7t7s)

:/ ei&teinsf&n(xla“' sy Tny Y1yt 7y"7-) dfd?’]
&n

The Fourier transform of the heat operator then becomes

0

(5 + (Za)™)], = [(Za)e]™ + in. (®)

&n



The previous section constructed a set of functions ey € L*(R?"), with
I € 7%y, such that the set {e;} is a complete orthonormal basis of L?(R>")
and it diagonalizes the operator (.ffa)g Since in this section we will
consider different values for &, we will use {e;,¢} instead of {er} to denote
the basis corresponding to (Z,)¢. Use ;¢ to denote the eigenvalue of

(Za)¢ with respect to ere. Then equation (8) can be written as

8 m m .
(55 + (L) )e(ere) = AT +inlere. 9)
Now for any I € Z, define a norm || - ||; on . (R*"2) by
A1 = 32 rl i e i)
Mo

Before we proceed further, we need to make a convention about the
order of certain differential operators on R®"*2.  Consider the scaling
map A, : R*""? — R*™2 which sends (x1,--+ ,Zn, Y1, ,Yn,1,8) to
(c1, -+ 5 CTnyCY1, -+ CYn, 2L, *™s). A differential operator P on R*" 2
is called homogeneous of order k if

AL(P(f)) = ¢ "PAL(S)

holds for every pair of ¢ € RT and f € C®(R®*™?). The derivatives
with respect to Z; and Z; are then homogeneous of order 1, and % is
homogeneous of order 2m. For an integer k > 1, let Dy, be the finite set of
homogeneous differential operators of order k consisting of compositions

o_f operators among 21, , Zn, 21, Zn, %. For example, we have Z; o
Zy € Do, but (Z; + Zx) € D1. For I > 0, define another norm || - ||; on
S (R*2) as
£l =D D IPfllzmansa).
0<k<lPED,
The Plancherel identity, the inequality (3), and equations (4) to (7) then
imply that the norms || - ||; and || - || are equivalent when [ > 0.

Now consider a function x € C§°(R?*"*2). Tt follows immediately from
the definition that the multiplication map

my (R o Z(RH?)

fe=xf
is a bounded linear operator in the || - ||; norm. Therefore, when [ > 0,
m,, is also bounded in the || - ||; norm. In fact, the same result holds for

negative [ as well, as we have the following

Lemma 3.1. Let x € C5°(R*™™2), then for every | € Z, the map my is
bounded in the || - || norm.

Proof. If I > 0, the result is already proved in the previous paragraph.
If I <0, for every f € #(R®*"*?) consider the linear functional

T; . S(R"T?) = C

gH/fg.

If we endow . (R?™2) with the ||-||—; norm, then || f||; equals the operator
norm of Ty. Notice that T, ry = Ty o my. Since —I > 0, the operator
my is bounded in the || - ||-; norm, hence the operator norm of || T, f)|l
is bounded by a constant times the operator norm of || T f||. Therefore m,,
is bounded in the || - ||; norm. O



Let S; be the completion of . (R*™2) under the norm || - ||;. Then S;
is a Hilbert space, and S; is natually isomorphic to the dual of S_;. When
1 >1, we have S; C S;. By lemma 3.1, the map m, extends to bounded
linear maps on 5.

Every element in u € S; defines a distribution on In fact,
when [ > 0, we have S; C L*(R*"*2). When [ < 0, consider a testing
function f € .#(R®*"*2). The operator Ty defined in the proof of lemma
3.1 extends to a bounded operator on S;. Define (u, f) := T¢(n), then
(w, f) is continuous with respect to f in the || - ||=; norm, hence such an
assignment makes p a distribution on R?"+2,

Conversely, we have the following lemma:

R2n+2

Lemma 3.2. Let p be a compactly supported distribution on R*" "2 then
there exists | € Z such that p € S;.

Proof. The distribution p defines a linear functional from .7 (R*""2) to
C. Since p is compactly supported, there exists an integer N > 0 such
that p is bounded in the C norm. By the Sobolev embedding theorem,
there exists M > 0 such that p is bounded in the L3, norm. Notice that
2 = L1[Z;,Z;]. Therefore, if we define M = M - max{2,m}, then for any
bounded open set U C R?" "2, there exists a constant C' depending on U

and M such that
ClAls = I1fllez,,  Vf€CT ).

Since p is compactly supported, this implies that p is bounded in the
| - [I% norm. Recall that || - || and || - || 57 are equivalent norms, therefore
i defines a bounded linear functional on Sy;. Since the dual space of S
is canonically isomorphic to S_z;, there exists an element uwes. 17 such
that

<M/7f>L2 :u(f)7 VfES]\A/

The equation above implies that u’ equals p when viewed as distributions
on R?™*2 hence the result is proved. O

We also have the following regularity result:

Lemma 3.3. Let p be a distribution on R*™2. If u € S; for every I,
then p must be smooth.

Proof. We only need to prove that xu is smooth for every x € C§° (R?"12).
Since the multiplication by x gives a bounded linear operator on S;, the
assumption on p implies that xu € S; for every [.

Let U C R?"*2 be a bounded open set such that supp x C U. For any
N > 0, there exists a constant C7 and a positive integer M such that

Ch ||fHL§VI > flle~-

Let M = M- max{2, m}, then there is a constant C> depending on U and
M such that

Callflzz = Ifllsa, -
Combining the two inequalities above, we conclude that xu has bounded
C™ norm. Since N is arbitrary, this implies that y/u is smooth, hence the
result is proved. O

With the preparations above, we can now present the proof of the
main theorem



Theorem 3.4 (Greiner [3], Calin-Chang-Furutani-Iwasaki [1]). Suppose
a is admissible, then the operator % + (Za)™ s hypoelliptic.

Proof. Let U be an open subset of R®*™2. Let u be a distribution on
R?*"*2 such that [Z + (Za)™]()|u is smooth. We need to prove that 1
is smooth on U. Take an arbitrary open subset U’ C U such that U’ C U,
we only need to prove that p is smooth on U’. To simplify notations, let
D=2+ (L)

Notice that equation (9) has the following consequence: for any f € Si,
if Df € S;, then f € Sjt1a2,. Moreover, we have the following Garding-
type inequality:

CUDOMNe+11F11) = [ f l42m. (10)

where C' is a constant depending on n, « and [.

By lemma 3.2, we may assume that p € S; for some integer [. Lemma
3.1 then implies xp € S;.

Recall that previously we have defined Dy to be the finite set of ho-
mogeneous differential operators of order k consisting of compositions of
operators among Z1,- - , Zn, 21, Zn, 2. For an element f € S, use
V¥ f to denote the tuple (Pf)pep, . Inequality (3) and equations (4) to
(7) then imply that when f € S;, every entry of V7 f is an element of
Si—j.

Notice that

2m—1

D(xp) =xD(w) + Y V" IxBV/yp,

Jj=0

where X are some bilinear pairings depending smoothly on the coordinates
(1, ,Zn, Y1, ,Yn,S,t). By the assumption, xD(u) is smooth and
compactly supported. Therefore by lemma 3.1, the distribution D(xu) is
an element of S;_2m+1.

Now we have xpu € Si C Si—2m+1, and D(xu) € Si—2m+1. Therefore,
by the previous discussion, the distribution xu is an element of S;41. The
smoothness of 1 on U’ then follows from a standard bootstrap argument
and lemma 3.3. O
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