1) Let $f(x)=2^{x}$, and let R be the region between the graph of f and the x axis on $[0,1]$. Find the volume V of the solid obtained by revolving R about the x axis. [NO PARTIAL CREDIT]
2) Find the area of a surface obtained by rotating the curve given parametrically by

$$
x=f(t)=\cos ^{2}(t)
$$

and

$$
y=g(t)=\sin ^{2}(t)
$$

for $0 \leq t \leq \pi / 2$, about x axis.
3) Evaluate the integral:

$$
\int \frac{1}{x\left(1+\ln ^{2}(x)\right)} d x
$$

4) Find the center of gravity of the region R between the graphs of f and g, where $f(x)=2-x^{2}$, and $g(x)=|x|$.
5) Find the value of the following limit, if it exists:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}
$$

If the limit does not exist, explain why.

