MATH 141 - Quiz 6, Solution 12 noon

1. (5 points) Determine whether the following series converges or diverges. Explain what
test(s) you use and how each test applies.
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Solution: Apply ratio test on this series.
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Take the limit,
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So, the ratio is 0, which is less than 1. By ratio test, the series converges.

2. (5 points) Find the radius of convergence of the series

Solution: Use generalized ratio test on this series.
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When n — o0, the ratio tends to be 0. So, the radius of convergence is R = oo.

3. (5 points) Find the sum of the series
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Solution: Rewrite the series like below.
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Then, we can apply formula for geometric series (as |r| =2/3 < 1)

[e.o]

Jntl ]~

R HONE
2
3

n=1

4. (5 points) Find the interval of convergence of the series
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Solution: Use generalized ratio test on this series. (Generalized root test is also
suitable.)
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The series will converge if 2|z| < 1, and will diverge if 2|z| > 1. So, the radius of
convergence is R = 1/2.

Specially, when x = 1/2,
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So, 1/2 is excluded in the interval of convergence.
Also, when x = —1/2,
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This series diverge by alternating series test. (lim, .. a, = 1) So, —1/2 is also

excluded in the interval of convergence.

To sum up, the interval of convergence should be (—1/2,1/2).
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