1. (5 points) Determine whether the following series converges or diverges. Explain what test(s) you use and how each test applies.

$$
\sum_{n=2}^{\infty} \frac{2^{n} n!}{(2 n)!}
$$

Solution: Apply ratio test on this series.

$$
\frac{a_{n+1}}{a_{n}}=\frac{\frac{2^{n+1}}{} \frac{(n+1)!}{n!}}{\frac{(2 n+2)!}{(2 n)!}}=\frac{2(n+1)}{(2 n+2)(2 n+1)}
$$

Take the limit,

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{2(n+1)}{(2 n+2)(2 n+1)}=0
$$

So, the ratio is 0 , which is less than 1 . By ratio test, the series converges.
2. (5 points) Find the radius of convergence of the series

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n!} x^{n}
$$

Solution: Use generalized ratio test on this series.

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\frac{2^{n+1}}{2^{n}}}{\frac{(n+1)!}{n!}} \frac{|x|^{n+1}}{|x|^{n}}=\frac{2}{n+1}|x|
$$

When $n \rightarrow \infty$, the ratio tends to be 0 . So, the radius of convergence is $R=\infty$.
3. (5 points) Find the sum of the series

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n+1}}
$$

Solution: Rewrite the series like below.

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n+1}}=\sum_{n=1}^{\infty} \frac{1}{3}\left(\frac{2}{3}\right)^{n}
$$

Then, we can apply formula for geometric series (as $|r|=2 / 3<1$)

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n+1}}=\frac{\frac{1}{3} \cdot\left(\frac{2}{3}\right)^{1}}{1-\frac{2}{3}}=\frac{2}{3} .
$$

4. (5 points) Find the interval of convergence of the series

$$
\sum_{n=1}^{\infty} 2^{n} x^{n}
$$

Solution: Use generalized ratio test on this series. (Generalized root test is also suitable.)

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2^{n+1}}{2^{n}} \frac{|x|^{n+1}}{|x|^{n}}=2|x|
$$

The series will converge if $2|x|<1$, and will diverge if $2|x|>1$. So, the radius of convergence is $R=1 / 2$.
Specially, when $x=1 / 2$,

$$
\sum_{n=1}^{\infty} 2^{n} x^{n}=\sum_{n=1}^{\infty} 2^{n}\left(\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} 1=\infty
$$

So, $1 / 2$ is excluded in the interval of convergence.
Also, when $x=-1 / 2$,

$$
\sum_{n=1}^{\infty} 2^{n} x^{n}=\sum_{n=1}^{\infty} 2^{n}\left(-\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty}(-1)^{n}
$$

This series diverge by alternating series test. $\left(\lim _{n \rightarrow \infty} a_{n}=1\right)$ So, $-1 / 2$ is also excluded in the interval of convergence.
To sum up, the interval of convergence should be $(-1 / 2,1 / 2)$.

